Data Fusion for Cross-Domain Real-Time Object Detection on the Edge

We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate in...

Full description

Bibliographic Details
Main Authors: Mykyta Kovalenko, David Przewozny, Peter Eisert, Sebastian Bosse, Paul Chojecki
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/13/6138
_version_ 1797590776697323520
author Mykyta Kovalenko
David Przewozny
Peter Eisert
Sebastian Bosse
Paul Chojecki
author_facet Mykyta Kovalenko
David Przewozny
Peter Eisert
Sebastian Bosse
Paul Chojecki
author_sort Mykyta Kovalenko
collection DOAJ
description We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate independent and specialized models. Our results show that using one single convolutional neural network (for object detection and hand-gesture classification) instead of two separate ones can reduce resource usage by almost <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For many classes, we observed an increase in accuracy when using the model trained with more labels. For small datasets (a few hundred instances per label), we found that it is advisable to add labels with many instances from another dataset to increase detection accuracy.
first_indexed 2024-03-11T01:28:13Z
format Article
id doaj.art-471be74226a2486f84faf8b61c356d76
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T01:28:13Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-471be74226a2486f84faf8b61c356d762023-11-18T17:31:05ZengMDPI AGSensors1424-82202023-07-012313613810.3390/s23136138Data Fusion for Cross-Domain Real-Time Object Detection on the EdgeMykyta Kovalenko0David Przewozny1Peter Eisert2Sebastian Bosse3Paul Chojecki4Fraunhofer Heinrich Hertz Institute, 10587 Berlin, GermanyFraunhofer Heinrich Hertz Institute, 10587 Berlin, GermanyFraunhofer Heinrich Hertz Institute, 10587 Berlin, GermanyFraunhofer Heinrich Hertz Institute, 10587 Berlin, GermanyFraunhofer Heinrich Hertz Institute, 10587 Berlin, GermanyWe investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate independent and specialized models. Our results show that using one single convolutional neural network (for object detection and hand-gesture classification) instead of two separate ones can reduce resource usage by almost <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For many classes, we observed an increase in accuracy when using the model trained with more labels. For small datasets (a few hundred instances per label), we found that it is advisable to add labels with many instances from another dataset to increase detection accuracy.https://www.mdpi.com/1424-8220/23/13/6138object detectionedge computinghuman-computer interactionvisual analysisoptimization
spellingShingle Mykyta Kovalenko
David Przewozny
Peter Eisert
Sebastian Bosse
Paul Chojecki
Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
Sensors
object detection
edge computing
human-computer interaction
visual analysis
optimization
title Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_full Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_fullStr Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_full_unstemmed Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_short Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_sort data fusion for cross domain real time object detection on the edge
topic object detection
edge computing
human-computer interaction
visual analysis
optimization
url https://www.mdpi.com/1424-8220/23/13/6138
work_keys_str_mv AT mykytakovalenko datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT davidprzewozny datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT petereisert datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT sebastianbosse datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT paulchojecki datafusionforcrossdomainrealtimeobjectdetectionontheedge