Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme

Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, <i>Aspergillus niger</i> ZEN-S-FS10 extracellular enzyme solution with ZEN-deg...

Full description

Bibliographic Details
Main Authors: Jian Ji, Jian Yu, Wei Xu, Yi Zheng, Yinzhi Zhang, Xiulan Sun
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/11/18/2908
Description
Summary:Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, <i>Aspergillus niger</i> ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75–80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28–38 °C and pH range of 2.0–7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C<sub>18</sub>H26O<sub>4</sub>), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives.
ISSN:2304-8158