Sylow multiplicities in finite groups

Let $G$ be a finite group and let $mathcal{P}=P_{1},ldots,P_{m}$ be a sequence‎ ‎of Sylow $p_{i}$-subgroups of $G$‎, ‎where $p_{1},ldots,p_{m}$ are the distinct‎ ‎prime divisors of $leftvert Grightvert $‎. ‎The Sylow multiplicity of $gin‎ ‎G$ in $mathcal{P}$ is the number of distinct factorizations...

Full description

Bibliographic Details
Main Author: Dan Levy
Format: Article
Language:English
Published: University of Isfahan 2018-06-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://ijgt.ui.ac.ir/article_21482_4d16a7d4c6f2488422da19da3ac6bcf6.pdf
Description
Summary:Let $G$ be a finite group and let $mathcal{P}=P_{1},ldots,P_{m}$ be a sequence‎ ‎of Sylow $p_{i}$-subgroups of $G$‎, ‎where $p_{1},ldots,p_{m}$ are the distinct‎ ‎prime divisors of $leftvert Grightvert $‎. ‎The Sylow multiplicity of $gin‎ ‎G$ in $mathcal{P}$ is the number of distinct factorizations $g=g_{1}cdots‎ ‎g_{m}$ such that $g_{i}in P_{i}$‎. ‎We review properties of the solvable‎ ‎radical and the solvable residual of $G$ which are formulated in terms of‎ ‎Sylow multiplicities‎, ‎and discuss some related open questions‎.
ISSN:2251-7650
2251-7669