Summary: | Recently, various techniques and methods have been employed by mathematicians to solve specific types of fractional differential equations (FDEs) with symmetric properties. The study focuses on Navier-Stokes equations (NSEs) that involve MHD effects with time-fractional derivatives (FDs). The (NSEs) with time-FDs of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> are investigated. To facilitate anomalous diffusion in fractal media, mild solutions and Mittag-Leffler functions are used. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>δ</mi><mo>,</mo><mi>r</mi></mrow></msup></semantics></math></inline-formula>, the existence, and uniqueness of local and global mild solutions are proved, as well as the symmetric structure created. Moderate local solutions are provided in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. Moreover, the regularity and existence of classical solutions to the equations in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. are established and presented.
|