Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects

Recently, various techniques and methods have been employed by mathematicians to solve specific types of fractional differential equations (FDEs) with symmetric properties. The study focuses on Navier-Stokes equations (NSEs) that involve MHD effects with time-fractional derivatives (FDs). The (NSEs)...

Full description

Bibliographic Details
Main Authors: Kinda Abuasbeh, Ramsha Shafqat, Azmat Ullah Khan Niazi, Muath Awadalla
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/280
_version_ 1797618052137746432
author Kinda Abuasbeh
Ramsha Shafqat
Azmat Ullah Khan Niazi
Muath Awadalla
author_facet Kinda Abuasbeh
Ramsha Shafqat
Azmat Ullah Khan Niazi
Muath Awadalla
author_sort Kinda Abuasbeh
collection DOAJ
description Recently, various techniques and methods have been employed by mathematicians to solve specific types of fractional differential equations (FDEs) with symmetric properties. The study focuses on Navier-Stokes equations (NSEs) that involve MHD effects with time-fractional derivatives (FDs). The (NSEs) with time-FDs of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> are investigated. To facilitate anomalous diffusion in fractal media, mild solutions and Mittag-Leffler functions are used. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>δ</mi><mo>,</mo><mi>r</mi></mrow></msup></semantics></math></inline-formula>, the existence, and uniqueness of local and global mild solutions are proved, as well as the symmetric structure created. Moderate local solutions are provided in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. Moreover, the regularity and existence of classical solutions to the equations in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. are established and presented.
first_indexed 2024-03-11T08:04:44Z
format Article
id doaj.art-472e59ff3fd64f60bee4ba2c0e6a520e
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T08:04:44Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-472e59ff3fd64f60bee4ba2c0e6a520e2023-11-16T23:31:12ZengMDPI AGSymmetry2073-89942023-01-0115228010.3390/sym15020280Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD EffectsKinda Abuasbeh0Ramsha Shafqat1Azmat Ullah Khan Niazi2Muath Awadalla3Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf 31982, Al Ahsa, Saudi ArabiaDepartment of Mathematics and Statistics, The University of Lahore, Sargodha 40100, PakistanDepartment of Mathematics and Statistics, The University of Lahore, Sargodha 40100, PakistanDepartment of Mathematics and Statistics, College of Science, King Faisal University, Hafuf 31982, Al Ahsa, Saudi ArabiaRecently, various techniques and methods have been employed by mathematicians to solve specific types of fractional differential equations (FDEs) with symmetric properties. The study focuses on Navier-Stokes equations (NSEs) that involve MHD effects with time-fractional derivatives (FDs). The (NSEs) with time-FDs of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> are investigated. To facilitate anomalous diffusion in fractal media, mild solutions and Mittag-Leffler functions are used. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>δ</mi><mo>,</mo><mi>r</mi></mrow></msup></semantics></math></inline-formula>, the existence, and uniqueness of local and global mild solutions are proved, as well as the symmetric structure created. Moderate local solutions are provided in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. Moreover, the regularity and existence of classical solutions to the equations in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mi>r</mi></msub></semantics></math></inline-formula>. are established and presented.https://www.mdpi.com/2073-8994/15/2/280Navier-Stokes equationsCaputo fractional derivativeMittag-Leffler functionsmild solutionsregularity
spellingShingle Kinda Abuasbeh
Ramsha Shafqat
Azmat Ullah Khan Niazi
Muath Awadalla
Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
Symmetry
Navier-Stokes equations
Caputo fractional derivative
Mittag-Leffler functions
mild solutions
regularity
title Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
title_full Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
title_fullStr Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
title_full_unstemmed Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
title_short Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
title_sort mild solutions for the time fractional navier stokes equations with mhd effects
topic Navier-Stokes equations
Caputo fractional derivative
Mittag-Leffler functions
mild solutions
regularity
url https://www.mdpi.com/2073-8994/15/2/280
work_keys_str_mv AT kindaabuasbeh mildsolutionsforthetimefractionalnavierstokesequationswithmhdeffects
AT ramshashafqat mildsolutionsforthetimefractionalnavierstokesequationswithmhdeffects
AT azmatullahkhanniazi mildsolutionsforthetimefractionalnavierstokesequationswithmhdeffects
AT muathawadalla mildsolutionsforthetimefractionalnavierstokesequationswithmhdeffects