Insights on the Effects of Magnetic Forces on the Efficiency of Vibration Energy Harvesting Absorbers in Controlling Dynamical Systems

This study investigates the effects of magnetic constraints on a piezoelectric energy harvesting absorber while simultaneously controlling a primary structure and harnessing energy. An accurate forcing representation of the magnetic force is investigated and developed. A reduced-order model is deriv...

Full description

Bibliographic Details
Main Authors: Tyler Alvis, Mikhail Mesh, Abdessattar Abdelkefi
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/3/1272
Description
Summary:This study investigates the effects of magnetic constraints on a piezoelectric energy harvesting absorber while simultaneously controlling a primary structure and harnessing energy. An accurate forcing representation of the magnetic force is investigated and developed. A reduced-order model is derived using the Euler–Lagrange principle, and the impact of the magnetic force is evaluated on the absorber’s static position and coupled natural frequency of the energy harvesting absorber and the coupled primary absorber system. The results show that attractive magnet configurations cannot improve the system substantially before pull-in occurs. A rigorous eigenvalue problem analysis is performed on the absorber’s substrate thickness and tip mass to effectively design an energy harvesting absorber for multiple initial gap sizes for the repulsive configurations. Then, the effects of the forcing amplitude on the primary structure absorber are studied and characterized by determining an effective design of the system for a simultaneous reduction in the primary structure’s motion and improvement in the harvester’s efficiency.
ISSN:1996-1073