Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes
The presence of floating plants is becoming an uncontrollable issue on the banks of Douala, Cameroon, notably in the city of Bonaberi, where the water hyacinth is expanding incredibly quickly. The aim of this study is to evaluate the mechanical and physicochemical performance of water hyacinth fiber...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2023-01-01
|
Series: | International Journal of Polymer Science |
Online Access: | http://dx.doi.org/10.1155/2023/6652978 |
_version_ | 1827009985456898048 |
---|---|
author | Brillant Djomsi Wembe Nfor Clins Wiryikfu Guy Edgar Ntamack Bienvenue Kenmeugne Theodore Tchotang Djomi Rolland Tido Tiwa Stanislas |
author_facet | Brillant Djomsi Wembe Nfor Clins Wiryikfu Guy Edgar Ntamack Bienvenue Kenmeugne Theodore Tchotang Djomi Rolland Tido Tiwa Stanislas |
author_sort | Brillant Djomsi Wembe |
collection | DOAJ |
description | The presence of floating plants is becoming an uncontrollable issue on the banks of Douala, Cameroon, notably in the city of Bonaberi, where the water hyacinth is expanding incredibly quickly. The aim of this study is to evaluate the mechanical and physicochemical performance of water hyacinth fibers for pulp manufacture. To this end, tensile tests on fiber bundles in accordance with ISO 13934-1:2013, thermogravimetric analysis (TGA), chemical composition evaluation in accordance with ASTM 1972 and 1977, and absorption rate were carried out. The results obtained indicate that the fiber is composed of a variety of fibrils with irregular cross-sections, with an average diameter ranging from 0.02 to 0.09 mm. The fibers absorb 42.03% of their weight in water, and their density ranges from 1.23 to 1.45 g/cm3. According to mechanical tests, the fiber has a maximum tensile strength of around 0.64 MPa, a specific modulus of 6.45 MPa/g/cm3, and an elongation at break of 1.8%. For the chemical characteristics of the fiber, cellulose, hemicellulose, and lignin contents are 68.3%, 11.3%, and 7.4%, respectively, while pectin and ash content concentrations are 4.8% and 7.8%, respectively. Thus, in order to determine whether the plant is suitable for making pulp and paper, this investigation was conducted to examine its fiber properties. It was found that the water hyacinth fibers were superior to flax straw and jute fibers in all qualities, but not as good as silk cotton and bagasse fibers. Given the information above, water hyacinth has been recognized as a potential raw material for the pulp and paper industries, though. |
first_indexed | 2024-03-11T14:37:52Z |
format | Article |
id | doaj.art-473f0901675542b4b018eded9e6421b5 |
institution | Directory Open Access Journal |
issn | 1687-9430 |
language | English |
last_indexed | 2025-02-18T12:57:51Z |
publishDate | 2023-01-01 |
publisher | Hindawi Limited |
record_format | Article |
series | International Journal of Polymer Science |
spelling | doaj.art-473f0901675542b4b018eded9e6421b52024-11-02T03:56:58ZengHindawi LimitedInternational Journal of Polymer Science1687-94302023-01-01202310.1155/2023/6652978Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipesBrillant Djomsi Wembe0Nfor Clins Wiryikfu1Guy Edgar Ntamack2Bienvenue Kenmeugne3Theodore Tchotang4Djomi Rolland5Tido Tiwa Stanislas6Laboratory of Civil Engineering and MechanicsLaboratory of Civil Engineering and MechanicsDepartment of PhysicsLaboratory of Civil Engineering and MechanicsLaboratory of Civil Engineering and MechanicsLaboratory of Civil Engineering and MechanicsLaboratory of MechanicsThe presence of floating plants is becoming an uncontrollable issue on the banks of Douala, Cameroon, notably in the city of Bonaberi, where the water hyacinth is expanding incredibly quickly. The aim of this study is to evaluate the mechanical and physicochemical performance of water hyacinth fibers for pulp manufacture. To this end, tensile tests on fiber bundles in accordance with ISO 13934-1:2013, thermogravimetric analysis (TGA), chemical composition evaluation in accordance with ASTM 1972 and 1977, and absorption rate were carried out. The results obtained indicate that the fiber is composed of a variety of fibrils with irregular cross-sections, with an average diameter ranging from 0.02 to 0.09 mm. The fibers absorb 42.03% of their weight in water, and their density ranges from 1.23 to 1.45 g/cm3. According to mechanical tests, the fiber has a maximum tensile strength of around 0.64 MPa, a specific modulus of 6.45 MPa/g/cm3, and an elongation at break of 1.8%. For the chemical characteristics of the fiber, cellulose, hemicellulose, and lignin contents are 68.3%, 11.3%, and 7.4%, respectively, while pectin and ash content concentrations are 4.8% and 7.8%, respectively. Thus, in order to determine whether the plant is suitable for making pulp and paper, this investigation was conducted to examine its fiber properties. It was found that the water hyacinth fibers were superior to flax straw and jute fibers in all qualities, but not as good as silk cotton and bagasse fibers. Given the information above, water hyacinth has been recognized as a potential raw material for the pulp and paper industries, though.http://dx.doi.org/10.1155/2023/6652978 |
spellingShingle | Brillant Djomsi Wembe Nfor Clins Wiryikfu Guy Edgar Ntamack Bienvenue Kenmeugne Theodore Tchotang Djomi Rolland Tido Tiwa Stanislas Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes International Journal of Polymer Science |
title | Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes |
title_full | Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes |
title_fullStr | Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes |
title_full_unstemmed | Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes |
title_short | Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes |
title_sort | extraction and physicochemical and thermomechanical characterizations of water hyacinth fibers eichhornia crassipes |
url | http://dx.doi.org/10.1155/2023/6652978 |
work_keys_str_mv | AT brillantdjomsiwembe extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT nforclinswiryikfu extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT guyedgarntamack extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT bienvenuekenmeugne extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT theodoretchotang extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT djomirolland extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes AT tidotiwastanislas extractionandphysicochemicalandthermomechanicalcharacterizationsofwaterhyacinthfiberseichhorniacrassipes |