Bioproduction of L‐piperazic acid in gram scale using Aureobasidium melanogenum

Summary Currently, piperazic acid is chemically synthesized using ecologically unfriendly processes. Microbial synthesis from glucose is an attractive alternative to chemical synthesis. In this study, we report the production of L‐piperazic acid via microbial fermentation with the first engineered f...

Full description

Bibliographic Details
Main Authors: Cuncui Kong, Zhuangzhuang Wang, Guanglei Liu, Zhenming Chi, Rodrigo Ledesma‐Amaro, Zhe Chi
Format: Article
Language:English
Published: Wiley 2021-07-01
Series:Microbial Biotechnology
Online Access:https://doi.org/10.1111/1751-7915.13838
Description
Summary:Summary Currently, piperazic acid is chemically synthesized using ecologically unfriendly processes. Microbial synthesis from glucose is an attractive alternative to chemical synthesis. In this study, we report the production of L‐piperazic acid via microbial fermentation with the first engineered fungal strain of Aureobasidium melanogenum; this strain was constructed by chassis development, genetic element reconstitution and optimization, synthetic rewiring and constitutive genetic circuit reconstitution, to build a robust L‐piperazic acid synthetic cascade. These genetic modifications enable A. melanogenum to directly convert glucose to L‐piperazic acid without relying on the use of either chemically synthesized precursors or harsh conditions. This bio‐based process overcomes the shortcomings of the conventional synthesis routes. The ultimately engineered strain is a very high‐efficient cell factory that can excrete 1.12 ± 0.05 g l‐1 of L‐piperazic acid after a 120‐h 10.0‐l fed‐batch fermentation; this is the highest titre of L‐piperazic acid reported using a microbial cell factory.
ISSN:1751-7915