Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres
N<sub>2</sub>O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmosphe...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/17/4539/2017/acp-17-4539-2017.pdf |
_version_ | 1818876826352615424 |
---|---|
author | M. Prokopiou P. Martinerie C. J. Sapart E. Witrant G. Monteil K. Ishijima S. Bernard J. Kaiser I. Levin T. Blunier D. Etheridge E. Dlugokencky R. S. W. van de Wal T. Röckmann |
author_facet | M. Prokopiou P. Martinerie C. J. Sapart E. Witrant G. Monteil K. Ishijima S. Bernard J. Kaiser I. Levin T. Blunier D. Etheridge E. Dlugokencky R. S. W. van de Wal T. Röckmann |
author_sort | M. Prokopiou |
collection | DOAJ |
description | N<sub>2</sub>O is currently the third most important anthropogenic
greenhouse gas in terms of radiative forcing and its atmospheric mole
fraction is rising steadily. To quantify the growth rate and its causes over
the past decades, we performed a multi-site reconstruction of the atmospheric
N<sub>2</sub>O mole fraction and isotopic composition using new and previously
published firn air data collected from Greenland and Antarctica in
combination with a firn diffusion and densification model. The multi-site
reconstruction showed that while the global mean N<sub>2</sub>O mole fraction
increased from (290 ± 1) nmol mol<sup>−1</sup> in 1940 to
(322 ± 1) nmol mol<sup>−1</sup> in 2008, the isotopic composition of
atmospheric N<sub>2</sub>O decreased by (−2.2 ± 0.2) ‰ for
<i>δ</i><sup>15</sup>N<sup>av</sup>, (−1.0 ± 0.3) ‰ for
<i>δ</i><sup>18</sup>O, (−1.3 ± 0.6) ‰ for
<i>δ</i><sup>15</sup>N<sup><i>α</i></sup>, and (−2.8 ± 0.6) ‰ for
<i>δ</i><sup>15</sup>N<sup><i>β</i></sup> over the same period. The detailed temporal
evolution of the mole fraction and isotopic composition derived from the firn
air model was then used in a two-box atmospheric model (comprising a
stratospheric box and a tropospheric box) to infer changes in the isotopic
source signature over time. The precise value of the source strength depends
on the choice of the N<sub>2</sub>O lifetime, which we choose to fix at 123 years.
The average isotopic composition over the investigated period is
<i>δ</i><sup>15</sup>N<sup>av</sup> = (−7.6 ± 0.8) ‰ (vs.
air-N<sub>2</sub>), <i>δ</i><sup>18</sup>O = (32.2 ± 0.2) ‰ (vs. Vienna
Standard Mean Ocean Water – VSMOW) for
<i>δ</i><sup>18</sup>O, <i>δ</i><sup>15</sup>N<sup><i>α</i></sup> = (−3.0 ± 1.9) ‰
and <i>δ</i><sup>15</sup>N<sup><i>β</i></sup> = (−11.7 ± 2.3) ‰.
<i>δ</i><sup>15</sup>N<sup>av</sup>, and <i>δ</i><sup>15</sup>N<sup><i>β</i></sup> show some temporal
variability, while for the other signatures the error bars of the
reconstruction are too large to retrieve reliable temporal changes. Possible
processes that may explain trends in <sup>15</sup>N are discussed. The <sup>15</sup>N
site preference ( = <i>δ</i><sup>15</sup>N<sup><i>α</i></sup> − <i>δ</i><sup>15</sup>N<sup><i>β</i></sup>)
provides evidence of a shift in emissions from denitrification to
nitrification, although the uncertainty envelopes are large. |
first_indexed | 2024-12-19T13:48:33Z |
format | Article |
id | doaj.art-4741aab3e6af4dad90f89681c4118740 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-19T13:48:33Z |
publishDate | 2017-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-4741aab3e6af4dad90f89681c41187402022-12-21T20:18:49ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-04-011774539456410.5194/acp-17-4539-2017Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheresM. Prokopiou0P. Martinerie1C. J. Sapart2E. Witrant3G. Monteil4K. Ishijima5S. Bernard6J. Kaiser7I. Levin8T. Blunier9D. Etheridge10E. Dlugokencky11R. S. W. van de Wal12T. Röckmann13Institute for Marine and Atmospheric Research Utrecht, Utrecht, the NetherlandsUniversity of Grenoble Alpes/CNRS, IRD, IGE, 38000 Grenoble, FranceInstitute for Marine and Atmospheric Research Utrecht, Utrecht, the NetherlandsUniversity of Grenoble Alpes/CNRS, GIPSA-lab, 38000 Grenoble, FranceInstitute for Marine and Atmospheric Research Utrecht, Utrecht, the NetherlandsNational Institute of Polar Research, Tokyo, JapanUniversity of Grenoble Alpes/CNRS, IRD, IGE, 38000 Grenoble, FranceCentre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UKInstitute of Environmental Physics, Heidelberg University, GermanyCentre for Ice and Climate, Niels Bohr Institute, Copenhagen, DenmarkCSIRO Marine and Atmospheric Research, Victoria, AustraliaNOAA Earth System Research Laboratory, Boulder, Colorado, USAInstitute for Marine and Atmospheric Research Utrecht, Utrecht, the NetherlandsInstitute for Marine and Atmospheric Research Utrecht, Utrecht, the NetherlandsN<sub>2</sub>O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N<sub>2</sub>O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N<sub>2</sub>O mole fraction increased from (290 ± 1) nmol mol<sup>−1</sup> in 1940 to (322 ± 1) nmol mol<sup>−1</sup> in 2008, the isotopic composition of atmospheric N<sub>2</sub>O decreased by (−2.2 ± 0.2) ‰ for <i>δ</i><sup>15</sup>N<sup>av</sup>, (−1.0 ± 0.3) ‰ for <i>δ</i><sup>18</sup>O, (−1.3 ± 0.6) ‰ for <i>δ</i><sup>15</sup>N<sup><i>α</i></sup>, and (−2.8 ± 0.6) ‰ for <i>δ</i><sup>15</sup>N<sup><i>β</i></sup> over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N<sub>2</sub>O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is <i>δ</i><sup>15</sup>N<sup>av</sup> = (−7.6 ± 0.8) ‰ (vs. air-N<sub>2</sub>), <i>δ</i><sup>18</sup>O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for <i>δ</i><sup>18</sup>O, <i>δ</i><sup>15</sup>N<sup><i>α</i></sup> = (−3.0 ± 1.9) ‰ and <i>δ</i><sup>15</sup>N<sup><i>β</i></sup> = (−11.7 ± 2.3) ‰. <i>δ</i><sup>15</sup>N<sup>av</sup>, and <i>δ</i><sup>15</sup>N<sup><i>β</i></sup> show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in <sup>15</sup>N are discussed. The <sup>15</sup>N site preference ( = <i>δ</i><sup>15</sup>N<sup><i>α</i></sup> − <i>δ</i><sup>15</sup>N<sup><i>β</i></sup>) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.http://www.atmos-chem-phys.net/17/4539/2017/acp-17-4539-2017.pdf |
spellingShingle | M. Prokopiou P. Martinerie C. J. Sapart E. Witrant G. Monteil K. Ishijima S. Bernard J. Kaiser I. Levin T. Blunier D. Etheridge E. Dlugokencky R. S. W. van de Wal T. Röckmann Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres Atmospheric Chemistry and Physics |
title | Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres |
title_full | Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres |
title_fullStr | Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres |
title_full_unstemmed | Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres |
title_short | Constraining N<sub>2</sub>O emissions since 1940 using firn air isotope measurements in both hemispheres |
title_sort | constraining n sub 2 sub o emissions since 1940 using firn air isotope measurements in both hemispheres |
url | http://www.atmos-chem-phys.net/17/4539/2017/acp-17-4539-2017.pdf |
work_keys_str_mv | AT mprokopiou constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT pmartinerie constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT cjsapart constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT ewitrant constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT gmonteil constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT kishijima constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT sbernard constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT jkaiser constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT ilevin constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT tblunier constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT detheridge constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT edlugokencky constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT rswvandewal constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres AT trockmann constrainingnsub2suboemissionssince1940usingfirnairisotopemeasurementsinbothhemispheres |