Parameters of the Supernova-Driven Interstellar Turbulence

Galactic dynamo models take as input certain parameters of the interstellar turbulence, most essentially the correlation time <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, root-mean-square t...

Full description

Bibliographic Details
Main Authors: Luke Chamandy, Anvar Shukurov
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Galaxies
Subjects:
Online Access:https://www.mdpi.com/2075-4434/8/3/56
_version_ 1797560677601116160
author Luke Chamandy
Anvar Shukurov
author_facet Luke Chamandy
Anvar Shukurov
author_sort Luke Chamandy
collection DOAJ
description Galactic dynamo models take as input certain parameters of the interstellar turbulence, most essentially the correlation time <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, root-mean-square turbulent speed <i>u</i>, and correlation scale <i>l</i>. However, these quantities are difficult, or, in the case of <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, impossible, to directly observe, and theorists have mostly relied on order of magnitude estimates. Here we present an analytic model to derive these quantities in terms of a small set of more accessible parameters. In our model, turbulence is assumed to be driven concurrently by isolated supernovae (SNe) and superbubbles (SBs), but clustering of SNe to form SBs can be turned off if desired, which reduces the number of model parameters by about half. In general, we find that isolated SNe and SBs can inject comparable amounts of turbulent energy into the interstellar medium, but SBs do so less efficiently. This results in rather low overall conversion rates of SN energy into turbulent energy of ∼1–3%. The results obtained for <i>l</i>, <i>u</i> and <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> for model parameter values representative of the Solar neighbourhood are consistent with those determined from direct numerical simulations. Our analytic model can be combined with existing dynamo models to predict more directly the magnetic field properties for nearby galaxies or for statistical populations of galaxies in cosmological models.
first_indexed 2024-03-10T18:04:02Z
format Article
id doaj.art-474365fe5efd46c5b12b954829da6773
institution Directory Open Access Journal
issn 2075-4434
language English
last_indexed 2024-03-10T18:04:02Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Galaxies
spelling doaj.art-474365fe5efd46c5b12b954829da67732023-11-20T08:38:33ZengMDPI AGGalaxies2075-44342020-07-01835610.3390/galaxies8030056Parameters of the Supernova-Driven Interstellar TurbulenceLuke Chamandy0Anvar Shukurov1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USASchool of Mathematics, Statistics & Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UKGalactic dynamo models take as input certain parameters of the interstellar turbulence, most essentially the correlation time <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, root-mean-square turbulent speed <i>u</i>, and correlation scale <i>l</i>. However, these quantities are difficult, or, in the case of <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, impossible, to directly observe, and theorists have mostly relied on order of magnitude estimates. Here we present an analytic model to derive these quantities in terms of a small set of more accessible parameters. In our model, turbulence is assumed to be driven concurrently by isolated supernovae (SNe) and superbubbles (SBs), but clustering of SNe to form SBs can be turned off if desired, which reduces the number of model parameters by about half. In general, we find that isolated SNe and SBs can inject comparable amounts of turbulent energy into the interstellar medium, but SBs do so less efficiently. This results in rather low overall conversion rates of SN energy into turbulent energy of ∼1–3%. The results obtained for <i>l</i>, <i>u</i> and <inline-formula><math display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> for model parameter values representative of the Solar neighbourhood are consistent with those determined from direct numerical simulations. Our analytic model can be combined with existing dynamo models to predict more directly the magnetic field properties for nearby galaxies or for statistical populations of galaxies in cosmological models.https://www.mdpi.com/2075-4434/8/3/56turbulencegalaxies: ISMISM: kinematics and dynamicsdynamogalaxies: spiralgalaxies: magnetic fields
spellingShingle Luke Chamandy
Anvar Shukurov
Parameters of the Supernova-Driven Interstellar Turbulence
Galaxies
turbulence
galaxies: ISM
ISM: kinematics and dynamics
dynamo
galaxies: spiral
galaxies: magnetic fields
title Parameters of the Supernova-Driven Interstellar Turbulence
title_full Parameters of the Supernova-Driven Interstellar Turbulence
title_fullStr Parameters of the Supernova-Driven Interstellar Turbulence
title_full_unstemmed Parameters of the Supernova-Driven Interstellar Turbulence
title_short Parameters of the Supernova-Driven Interstellar Turbulence
title_sort parameters of the supernova driven interstellar turbulence
topic turbulence
galaxies: ISM
ISM: kinematics and dynamics
dynamo
galaxies: spiral
galaxies: magnetic fields
url https://www.mdpi.com/2075-4434/8/3/56
work_keys_str_mv AT lukechamandy parametersofthesupernovadriveninterstellarturbulence
AT anvarshukurov parametersofthesupernovadriveninterstellarturbulence