Operational Costs of He3 Separation Using the Superfluidity of He4

Helium is the second most abundant element in the Universe after hydrogen. Considerable resources of helium-3 isotope (He3) are located mostly outside the Earth. He3 is very important for science and industry, especially for airport neutron detectors, lung tomography and helium dilution refrigerator...

Full description

Bibliographic Details
Main Authors: Jakub Niechciał, Piotr Banat, Wojciech Kempiński, Zbigniew Trybuła, Maciej Chorowski, Jarosław Poliński, Katarzyna Chołast, Andrzej Kociemba
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/22/6134
Description
Summary:Helium is the second most abundant element in the Universe after hydrogen. Considerable resources of helium-3 isotope (He3) are located mostly outside the Earth. He3 is very important for science and industry, especially for airport neutron detectors, lung tomography and helium dilution refrigerators. Besides, global warming is forcing the industry and governments to search for alternative energy sources, and He3 has the potential to be used as fuel in future nuclear fusion power plants. Unfortunately, the price of gaseous He3 has recently increased from $200 per liter to over $2750. The expected further increase in price and demands led us to present an analysis of the economic profitability for He3 separation process, which utilizes the properties of superfluid helium. This paper shows the arguments supporting the idea that extraction from natural sources is the only economically viable way of obtaining He3 isotope nowadays. The method could be relatively easily implemented into the production cycles of the low temperature natural gas purification plant.
ISSN:1996-1073