A comparison of the accuracy of patterns processed from an inlay casting wax, an auto-polymerized resin and a light-cured resin pattern material

Background: Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensiona...

Full description

Bibliographic Details
Main Authors: Praveen Rajagopal, Vidya Chitre, Meena A Aras
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2012-01-01
Series:Indian Journal of Dental Research
Subjects:
Online Access:http://www.ijdr.in/article.asp?issn=0970-9290;year=2012;volume=23;issue=2;spage=152;epage=156;aulast=Rajagopal
Description
Summary:Background: Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. Aims: This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Materials and Methods: Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. Results: The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. Conclusion: The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.
ISSN:0970-9290
1998-3603