Summary: | Factors such as mechanical deformation and temperature changes lead to phase mismatch in optical parametric amplification systems, impacting energy stability. A phase compensation method via the linear electro-optic effect can overcome this limitation. Phase mismatch compensation characteristics were simulated via the linear electro-optic effect in 70%-deuterated DKDP and 95%-deuterated DKDP. This method was applied to OPA systems to verify its feasibility. The results show that the temperature acceptance bandwidth of 70%-deuterated DKDP and 95%-deuterated DKDP can be ~1.75 and ~2 times larger, respectively, than that of the OPA without compensation. Moreover, the angle acceptance bandwidth of 70%-deuterated DKDP and 95%-deuterated DKDP can be ~2 times larger than that of the OPA without compensation. The abovementioned method can facilitate the compensation of phase mismatch within a range and can be widely used in OPA and optical parametric chirped pulse amplification systems to improve laser stability.
|