An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs

We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m−2). These measurements were originally taken as part of...

Full description

Bibliographic Details
Main Authors: Milla Kibble, Suleiman A. Khan, Muhammad Ammad-ud-din, Sailalitha Bollepalli, Teemu Palviainen, Jaakko Kaprio, Kirsi H. Pietiläinen, Miina Ollikainen
Format: Article
Language:English
Published: The Royal Society 2020-10-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.200872
_version_ 1828890162640191488
author Milla Kibble
Suleiman A. Khan
Muhammad Ammad-ud-din
Sailalitha Bollepalli
Teemu Palviainen
Jaakko Kaprio
Kirsi H. Pietiläinen
Miina Ollikainen
author_facet Milla Kibble
Suleiman A. Khan
Muhammad Ammad-ud-din
Sailalitha Bollepalli
Teemu Palviainen
Jaakko Kaprio
Kirsi H. Pietiläinen
Miina Ollikainen
author_sort Milla Kibble
collection DOAJ
description We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m−2). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA.
first_indexed 2024-12-13T12:54:01Z
format Article
id doaj.art-476425aae6fd400885c9915b23f20e29
institution Directory Open Access Journal
issn 2054-5703
language English
last_indexed 2024-12-13T12:54:01Z
publishDate 2020-10-01
publisher The Royal Society
record_format Article
series Royal Society Open Science
spelling doaj.art-476425aae6fd400885c9915b23f20e292022-12-21T23:45:15ZengThe Royal SocietyRoyal Society Open Science2054-57032020-10-0171010.1098/rsos.200872200872An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairsMilla KibbleSuleiman A. KhanMuhammad Ammad-ud-dinSailalitha BollepalliTeemu PalviainenJaakko KaprioKirsi H. PietiläinenMiina OllikainenWe combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m−2). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA.https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.200872machine learningbig dataobesitymonozygotic twins
spellingShingle Milla Kibble
Suleiman A. Khan
Muhammad Ammad-ud-din
Sailalitha Bollepalli
Teemu Palviainen
Jaakko Kaprio
Kirsi H. Pietiläinen
Miina Ollikainen
An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
Royal Society Open Science
machine learning
big data
obesity
monozygotic twins
title An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_full An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_fullStr An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_full_unstemmed An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_short An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs
title_sort integrative machine learning approach to discovering multi level molecular mechanisms of obesity using data from monozygotic twin pairs
topic machine learning
big data
obesity
monozygotic twins
url https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.200872
work_keys_str_mv AT millakibble anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT suleimanakhan anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT muhammadammaduddin anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT sailalithabollepalli anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT teemupalviainen anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT jaakkokaprio anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT kirsihpietilainen anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT miinaollikainen anintegrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT millakibble integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT suleimanakhan integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT muhammadammaduddin integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT sailalithabollepalli integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT teemupalviainen integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT jaakkokaprio integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT kirsihpietilainen integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs
AT miinaollikainen integrativemachinelearningapproachtodiscoveringmultilevelmolecularmechanismsofobesityusingdatafrommonozygotictwinpairs