Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District

Abstract Geographically Weighted Regression (GWR) is regression model that developed for data modeling with continuous respond variable and considering the spatial or location aspect. Leptospirosis case happened in some regions in Indonesia, including in Bantul District, Special Region of Yogyakarta...

Full description

Bibliographic Details
Main Authors: Prima Widayani, Totok Gunawan, Projo Danoedoro, Sugeng Juwono Mardihusodo
Format: Article
Language:English
Published: Universitas Gadjah Mada 2017-01-01
Series:Indonesian Journal of Geography
Subjects:
Online Access:https://jurnal.ugm.ac.id/ijg/article/view/17601
_version_ 1818955860776321024
author Prima Widayani
Totok Gunawan
Projo Danoedoro
Sugeng Juwono Mardihusodo
author_facet Prima Widayani
Totok Gunawan
Projo Danoedoro
Sugeng Juwono Mardihusodo
author_sort Prima Widayani
collection DOAJ
description Abstract Geographically Weighted Regression (GWR) is regression model that developed for data modeling with continuous respond variable and considering the spatial or location aspect. Leptospirosis case happened in some regions in Indonesia, including in Bantul District, Special Region of Yogyakarta. The purpose of this study are to determine local and global variable in making vulnerable area model of Leptospirosis disease, determine the best type of weighting function and make vulnerable area map of Leptospirosis. Alos satelite imagery as primary data to get settlement and paddy fields area. The others variable are the percentage of population’s age, flood risk, and the number of health facility that obtained from secondary data. Determinant variables that affect locally are flood risk, health facility, percentage of age 25-50 years old and the percentage of settlement area. Meanwhile, independent variable that affects globally is the percentage of paddy fields area. Vulnerability map of Leptospirosis disease resulted from the best GWR model which used weighting function Fixed Bisquare. There are 3 vulnerable area of Leptospirosis disease, high vulnerability area located in the middle of Bantul District, meanwhile the medium and low vulnerability area showed clustered pattern in the side of Bantul District.   Abstrak Geographically Weighted Regression (GWR) adalah model regresi yang dikembangkan untuk memodelkan data dengan variabel respon yang bersifat kontinu dan mempertimbangkan aspek spasial atau lokasi.  Kejadian Leptospirosis terjadi di beberapa wilayah di Indonesia termasuk di wilayah Kabupaten Bantul Daerah Istimewa Yogyakarta. Tujuan dari penelitian ini adalah menentukan variabel lokal dan global dalam membuat model  kerentanan Leptospirosis dan menentukan jenis fungsi pembobot yang terbaik serta membuat peta kerentanan wilayah Leptospirosis menggunakan aplikasi GWR. Citra Satelit Alos digunakan untuk mendapatkan data penggunaan lahan, yang selanjutnya diturunkan menjadi prosentase luas permukiman dan sawah. Parameter lainya adalah prosentase umur penduduk, resiko banjir dan jumlah fasilitas kesehatan yang diperoleh dari data sekunder. Variabel yang berpengaruh secara lokal adalah  Risiko Banjir, Fasilitas Kesehatan Presentase Usia 25-50 tahun, Prosentase Luas Pemukiman, sedangkan variabel independen yang bepengaruh secara global adalah Presentase Luas Sawah.  Peta kerentanan Leptospirosis yang dihasilkan dari model GWR terbaik yaitu menggunakan fungsi pembobot  Fixed Bisquare. Terdapat 3 kelas kerentanan Leptospirosis yaitu kelas kerentanan tinggi berada di desa-desa di tengah Kabupaten Bantul, sedangkan kelas sedang dan rendah menunjukkan pola menggelompok di wilayah pinggiran Kabupaten Bantul
first_indexed 2024-12-20T10:44:47Z
format Article
id doaj.art-476f5290e7fa44a98cea1279a3382f60
institution Directory Open Access Journal
issn 0024-9521
2354-9114
language English
last_indexed 2024-12-20T10:44:47Z
publishDate 2017-01-01
publisher Universitas Gadjah Mada
record_format Article
series Indonesian Journal of Geography
spelling doaj.art-476f5290e7fa44a98cea1279a3382f602022-12-21T19:43:26ZengUniversitas Gadjah MadaIndonesian Journal of Geography0024-95212354-91142017-01-0148216817710.22146/ijg.1760111914Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul DistrictPrima WidayaniTotok GunawanProjo DanoedoroSugeng Juwono MardihusodoAbstract Geographically Weighted Regression (GWR) is regression model that developed for data modeling with continuous respond variable and considering the spatial or location aspect. Leptospirosis case happened in some regions in Indonesia, including in Bantul District, Special Region of Yogyakarta. The purpose of this study are to determine local and global variable in making vulnerable area model of Leptospirosis disease, determine the best type of weighting function and make vulnerable area map of Leptospirosis. Alos satelite imagery as primary data to get settlement and paddy fields area. The others variable are the percentage of population’s age, flood risk, and the number of health facility that obtained from secondary data. Determinant variables that affect locally are flood risk, health facility, percentage of age 25-50 years old and the percentage of settlement area. Meanwhile, independent variable that affects globally is the percentage of paddy fields area. Vulnerability map of Leptospirosis disease resulted from the best GWR model which used weighting function Fixed Bisquare. There are 3 vulnerable area of Leptospirosis disease, high vulnerability area located in the middle of Bantul District, meanwhile the medium and low vulnerability area showed clustered pattern in the side of Bantul District.   Abstrak Geographically Weighted Regression (GWR) adalah model regresi yang dikembangkan untuk memodelkan data dengan variabel respon yang bersifat kontinu dan mempertimbangkan aspek spasial atau lokasi.  Kejadian Leptospirosis terjadi di beberapa wilayah di Indonesia termasuk di wilayah Kabupaten Bantul Daerah Istimewa Yogyakarta. Tujuan dari penelitian ini adalah menentukan variabel lokal dan global dalam membuat model  kerentanan Leptospirosis dan menentukan jenis fungsi pembobot yang terbaik serta membuat peta kerentanan wilayah Leptospirosis menggunakan aplikasi GWR. Citra Satelit Alos digunakan untuk mendapatkan data penggunaan lahan, yang selanjutnya diturunkan menjadi prosentase luas permukiman dan sawah. Parameter lainya adalah prosentase umur penduduk, resiko banjir dan jumlah fasilitas kesehatan yang diperoleh dari data sekunder. Variabel yang berpengaruh secara lokal adalah  Risiko Banjir, Fasilitas Kesehatan Presentase Usia 25-50 tahun, Prosentase Luas Pemukiman, sedangkan variabel independen yang bepengaruh secara global adalah Presentase Luas Sawah.  Peta kerentanan Leptospirosis yang dihasilkan dari model GWR terbaik yaitu menggunakan fungsi pembobot  Fixed Bisquare. Terdapat 3 kelas kerentanan Leptospirosis yaitu kelas kerentanan tinggi berada di desa-desa di tengah Kabupaten Bantul, sedangkan kelas sedang dan rendah menunjukkan pola menggelompok di wilayah pinggiran Kabupaten Bantulhttps://jurnal.ugm.ac.id/ijg/article/view/17601Geographically Weighted RegressionLeptospirosisVulnerability
spellingShingle Prima Widayani
Totok Gunawan
Projo Danoedoro
Sugeng Juwono Mardihusodo
Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
Indonesian Journal of Geography
Geographically Weighted Regression
Leptospirosis
Vulnerability
title Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
title_full Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
title_fullStr Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
title_full_unstemmed Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
title_short Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District
title_sort application of geographically weighted regression for vulnerable area mapping of leptospirosis in bantul district
topic Geographically Weighted Regression
Leptospirosis
Vulnerability
url https://jurnal.ugm.ac.id/ijg/article/view/17601
work_keys_str_mv AT primawidayani applicationofgeographicallyweightedregressionforvulnerableareamappingofleptospirosisinbantuldistrict
AT totokgunawan applicationofgeographicallyweightedregressionforvulnerableareamappingofleptospirosisinbantuldistrict
AT projodanoedoro applicationofgeographicallyweightedregressionforvulnerableareamappingofleptospirosisinbantuldistrict
AT sugengjuwonomardihusodo applicationofgeographicallyweightedregressionforvulnerableareamappingofleptospirosisinbantuldistrict