Summary: | The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as an effective alternative to other numerous particle generation processes, mainly thanks to the peculiar properties exhibited by supercritical fluids. Carbon dioxide and water have so far been two of the most commonly used fluids for particle generation, the former being the fluid par excellence in this field, mainly, because it offers the possibility of precipitating thermolabile particles. Nevertheless, the use of high-pressure and -temperature water opens an innovative and very interesting field of study, especially with regards to the precipitation of particles that could hardly be precipitated when CO<sub>2</sub> is used, such as metal particles with a considerable value in the market. This review describes an innovative method to obtain micro- and nanoparticles: hydrothermal synthesis by means of near and supercritical water. It also describes the differences between this method and other conventional procedures, the most currently active research centers, the types of particles synthesized, the techniques to evaluate the products obtained, the main operating parameters, the types of reactors, and amongst them, the most significant and the most frequently used, the scaling-up studies under progress, and the milestones to be reached in the coming years.
|