Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring

A finite ring with an identity whose lattice of ideals forms a unique chain is called a finite chain ring. Let <i>R</i> be a commutative chain ring with invariants <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semant...

Full description

Bibliographic Details
Main Authors: Sami Alabiad, Yousef Alkhamees
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/307
_version_ 1797396849613602816
author Sami Alabiad
Yousef Alkhamees
author_facet Sami Alabiad
Yousef Alkhamees
author_sort Sami Alabiad
collection DOAJ
description A finite ring with an identity whose lattice of ideals forms a unique chain is called a finite chain ring. Let <i>R</i> be a commutative chain ring with invariants <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi><mo>.</mo></mrow></semantics></math></inline-formula> It is known that <i>R</i> is an Eisenstein extension of degree <i>k</i> of a Galois ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>=</mo><mi>G</mi><mi>R</mi><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>,</mo><mi>r</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> does not divide <i>k</i>, the structure of the unit group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is known. The case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>∣</mo><mi>k</mi></mrow></semantics></math></inline-formula> was partially considered by M. Luis (1991) by providing counterexamples demonstrated that the results of Ayoub failed to capture the direct decomposition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> In this article, we manage to determine the structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>∣</mo><mi>k</mi></mrow></semantics></math></inline-formula> by fixing Ayoub’s approach. We also sharpen our results by introducing a system of generators for the unit group and enumerating the generators of the same order.
first_indexed 2024-03-09T00:57:30Z
format Article
id doaj.art-477fe8209ff04388a90b6c99ec80cf98
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T00:57:30Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-477fe8209ff04388a90b6c99ec80cf982023-12-11T16:46:58ZengMDPI AGSymmetry2073-89942021-02-0113230710.3390/sym13020307Recapturing the Structure of Group of Units of Any Finite Commutative Chain RingSami Alabiad0Yousef Alkhamees1Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi ArabiaA finite ring with an identity whose lattice of ideals forms a unique chain is called a finite chain ring. Let <i>R</i> be a commutative chain ring with invariants <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi><mo>.</mo></mrow></semantics></math></inline-formula> It is known that <i>R</i> is an Eisenstein extension of degree <i>k</i> of a Galois ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>=</mo><mi>G</mi><mi>R</mi><mo>(</mo><msup><mi>p</mi><mi>n</mi></msup><mo>,</mo><mi>r</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> does not divide <i>k</i>, the structure of the unit group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is known. The case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>∣</mo><mi>k</mi></mrow></semantics></math></inline-formula> was partially considered by M. Luis (1991) by providing counterexamples demonstrated that the results of Ayoub failed to capture the direct decomposition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> In this article, we manage to determine the structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>∣</mo><mi>k</mi></mrow></semantics></math></inline-formula> by fixing Ayoub’s approach. We also sharpen our results by introducing a system of generators for the unit group and enumerating the generators of the same order.https://www.mdpi.com/2073-8994/13/2/307finite chain ringsgroup of unitsGalois ringsj-diagrams
spellingShingle Sami Alabiad
Yousef Alkhamees
Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
Symmetry
finite chain rings
group of units
Galois rings
j-diagrams
title Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
title_full Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
title_fullStr Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
title_full_unstemmed Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
title_short Recapturing the Structure of Group of Units of Any Finite Commutative Chain Ring
title_sort recapturing the structure of group of units of any finite commutative chain ring
topic finite chain rings
group of units
Galois rings
j-diagrams
url https://www.mdpi.com/2073-8994/13/2/307
work_keys_str_mv AT samialabiad recapturingthestructureofgroupofunitsofanyfinitecommutativechainring
AT yousefalkhamees recapturingthestructureofgroupofunitsofanyfinitecommutativechainring