Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions

The shear modulus is an essential parameter that reflects the mechanical properties of the soil. However, little is known about the shear modulus of coral sand, especially under complex consolidation conditions. In this paper, we present the results of a multi-stage strain-controlled undrained cycli...

Full description

Bibliographic Details
Main Authors: Weijia Ma, You Qin, Fei Gao, Qi Wu
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/1/214
_version_ 1797440259041001472
author Weijia Ma
You Qin
Fei Gao
Qi Wu
author_facet Weijia Ma
You Qin
Fei Gao
Qi Wu
author_sort Weijia Ma
collection DOAJ
description The shear modulus is an essential parameter that reflects the mechanical properties of the soil. However, little is known about the shear modulus of coral sand, especially under complex consolidation conditions. In this paper, we present the results of a multi-stage strain-controlled undrained cyclic shear test on saturated coral sand. The influences of several consolidation state parameters: effective mean principal stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>), consolidation ratio (<i>k</i><sub>c</sub>), consolidation direction angle (<i>α</i><sub>0</sub>), and coefficient of intermediate principal stress (<i>b</i>) on the maximum shear modulus (<i>G</i><sub>0</sub>), the reference shear strain (<i>γ</i><sub>r</sub>) and the reduction of shear modulus (<i>G</i>) have been investigated. For a specified shear strain level, <i>G</i> will increase with increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula> and <i>k</i><sub>c</sub>, but decrease with increasing <i>α</i><sub>0</sub> and <i>b</i>. However, the difference between <i>G</i> for various <i>α</i><sub>0</sub> and <i>b</i> can be reduced by the increase of shear strain amplitude (<i>γ</i><sub>a</sub>). <i>G</i><sub>0</sub> shows an increasing trend with the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula> and <i>k</i><sub>c</sub>; on the contrary, with the increase of <i>α</i><sub>0</sub> and <i>b</i>, <i>G</i><sub>0</sub> shows a decreasing trend. To quantify the effect of consolidation state parameters on <i>G</i><sub>0</sub>, a new index (<i>μ</i><sub>G0</sub>) with four parameters (<i>λ</i><sub>1</sub>, <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>) which is related to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>, <i>k</i><sub>c</sub>, <i>α</i><sub>0</sub>, <i>b</i> is proposed to modify the prediction model of <i>G</i><sub>0</sub> in literature. Similarly, the values of <i>γ</i><sub>r</sub> under different consolidation conditions are also evaluated comprehensively by the four parameters, and the related index (<i>μ</i><sub><i>γ</i>r</sub>) is used to predict <i>γ</i><sub>r</sub> for various consolidation state parameters. A new finding is that there is an identical relationship between normalized shear modulus <i>G</i>/<i>G</i><sub>0</sub> and normalized shear strain <i>γ</i><sub>a</sub>/<i>γ</i><sub>r</sub> for various consolidation state parameters and the Davidenkov model can describe the <i>G</i>/<i>G</i><sub>0</sub>–<i>γ</i><sub>a</sub>/<i>γ</i><sub>r</sub> curves. By using the prediction model proposed in this paper, an excellent prediction of <i>G</i> can be obtained and the deviation between measured and predicted <i>G</i> is all within ±10%.
first_indexed 2024-03-09T12:05:32Z
format Article
id doaj.art-47818a4d019e4be8b8fc3e769170db0e
institution Directory Open Access Journal
issn 2077-1312
language English
last_indexed 2024-03-09T12:05:32Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Journal of Marine Science and Engineering
spelling doaj.art-47818a4d019e4be8b8fc3e769170db0e2023-11-30T22:58:44ZengMDPI AGJournal of Marine Science and Engineering2077-13122023-01-0111121410.3390/jmse11010214Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation ConditionsWeijia Ma0You Qin1Fei Gao2Qi Wu3School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaInstitute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, ChinaSchool of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaInstitute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, ChinaThe shear modulus is an essential parameter that reflects the mechanical properties of the soil. However, little is known about the shear modulus of coral sand, especially under complex consolidation conditions. In this paper, we present the results of a multi-stage strain-controlled undrained cyclic shear test on saturated coral sand. The influences of several consolidation state parameters: effective mean principal stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>), consolidation ratio (<i>k</i><sub>c</sub>), consolidation direction angle (<i>α</i><sub>0</sub>), and coefficient of intermediate principal stress (<i>b</i>) on the maximum shear modulus (<i>G</i><sub>0</sub>), the reference shear strain (<i>γ</i><sub>r</sub>) and the reduction of shear modulus (<i>G</i>) have been investigated. For a specified shear strain level, <i>G</i> will increase with increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula> and <i>k</i><sub>c</sub>, but decrease with increasing <i>α</i><sub>0</sub> and <i>b</i>. However, the difference between <i>G</i> for various <i>α</i><sub>0</sub> and <i>b</i> can be reduced by the increase of shear strain amplitude (<i>γ</i><sub>a</sub>). <i>G</i><sub>0</sub> shows an increasing trend with the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula> and <i>k</i><sub>c</sub>; on the contrary, with the increase of <i>α</i><sub>0</sub> and <i>b</i>, <i>G</i><sub>0</sub> shows a decreasing trend. To quantify the effect of consolidation state parameters on <i>G</i><sub>0</sub>, a new index (<i>μ</i><sub>G0</sub>) with four parameters (<i>λ</i><sub>1</sub>, <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>) which is related to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>p</mi><mn>0</mn><mo>′</mo></msubsup></mrow></semantics></math></inline-formula>, <i>k</i><sub>c</sub>, <i>α</i><sub>0</sub>, <i>b</i> is proposed to modify the prediction model of <i>G</i><sub>0</sub> in literature. Similarly, the values of <i>γ</i><sub>r</sub> under different consolidation conditions are also evaluated comprehensively by the four parameters, and the related index (<i>μ</i><sub><i>γ</i>r</sub>) is used to predict <i>γ</i><sub>r</sub> for various consolidation state parameters. A new finding is that there is an identical relationship between normalized shear modulus <i>G</i>/<i>G</i><sub>0</sub> and normalized shear strain <i>γ</i><sub>a</sub>/<i>γ</i><sub>r</sub> for various consolidation state parameters and the Davidenkov model can describe the <i>G</i>/<i>G</i><sub>0</sub>–<i>γ</i><sub>a</sub>/<i>γ</i><sub>r</sub> curves. By using the prediction model proposed in this paper, an excellent prediction of <i>G</i> can be obtained and the deviation between measured and predicted <i>G</i> is all within ±10%.https://www.mdpi.com/2077-1312/11/1/214coral sanddynamic shear modulusmaximum shear modulusconference shear strainprediction model of shear modulus
spellingShingle Weijia Ma
You Qin
Fei Gao
Qi Wu
Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
Journal of Marine Science and Engineering
coral sand
dynamic shear modulus
maximum shear modulus
conference shear strain
prediction model of shear modulus
title Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
title_full Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
title_fullStr Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
title_full_unstemmed Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
title_short Experimental Study of the Dynamic Shear Modulus of Saturated Coral Sand under Complex Consolidation Conditions
title_sort experimental study of the dynamic shear modulus of saturated coral sand under complex consolidation conditions
topic coral sand
dynamic shear modulus
maximum shear modulus
conference shear strain
prediction model of shear modulus
url https://www.mdpi.com/2077-1312/11/1/214
work_keys_str_mv AT weijiama experimentalstudyofthedynamicshearmodulusofsaturatedcoralsandundercomplexconsolidationconditions
AT youqin experimentalstudyofthedynamicshearmodulusofsaturatedcoralsandundercomplexconsolidationconditions
AT feigao experimentalstudyofthedynamicshearmodulusofsaturatedcoralsandundercomplexconsolidationconditions
AT qiwu experimentalstudyofthedynamicshearmodulusofsaturatedcoralsandundercomplexconsolidationconditions