An Empirical Study on Retinex Methods for Low-Light Image Enhancement

A key part of interpreting, visualizing, and monitoring the surface conditions of remote-sensing images is enhancing the quality of low-light images. It aims to produce higher contrast, noise-suppressed, and better quality images from the low-light version. Recently, Retinex theory-based enhancement...

Full description

Bibliographic Details
Main Authors: Muhammad Tahir Rasheed, Guiyu Guo, Daming Shi, Hufsa Khan, Xiaochun Cheng
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/18/4608
Description
Summary:A key part of interpreting, visualizing, and monitoring the surface conditions of remote-sensing images is enhancing the quality of low-light images. It aims to produce higher contrast, noise-suppressed, and better quality images from the low-light version. Recently, Retinex theory-based enhancement methods have gained a lot of attention because of their robustness. In this study, Retinex-based low-light enhancement methods are compared to other state-of-the-art low-light enhancement methods to determine their generalization ability and computational costs. Different commonly used test datasets covering different content and lighting conditions are used to compare the robustness of Retinex-based methods and other low-light enhancement techniques. Different evaluation metrics are used to compare the results, and an average ranking system is suggested to rank the enhancement methods.
ISSN:2072-4292