Uncertainty in big data analytics: survey, opportunities, and challenges

Abstract Big data analytics has gained wide attention from both academia and industry as the demand for understanding trends in massive datasets increases. Recent developments in sensor networks, cyber-physical systems, and the ubiquity of the Internet of Things (IoT) have increased the collection o...

Full description

Bibliographic Details
Main Authors: Reihaneh H. Hariri, Erik M. Fredericks, Kate M. Bowers
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Journal of Big Data
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40537-019-0206-3
_version_ 1818286428110454784
author Reihaneh H. Hariri
Erik M. Fredericks
Kate M. Bowers
author_facet Reihaneh H. Hariri
Erik M. Fredericks
Kate M. Bowers
author_sort Reihaneh H. Hariri
collection DOAJ
description Abstract Big data analytics has gained wide attention from both academia and industry as the demand for understanding trends in massive datasets increases. Recent developments in sensor networks, cyber-physical systems, and the ubiquity of the Internet of Things (IoT) have increased the collection of data (including health care, social media, smart cities, agriculture, finance, education, and more) to an enormous scale. However, the data collected from sensors, social media, financial records, etc. is inherently uncertain due to noise, incompleteness, and inconsistency. The analysis of such massive amounts of data requires advanced analytical techniques for efficiently reviewing and/or predicting future courses of action with high precision and advanced decision-making strategies. As the amount, variety, and speed of data increases, so too does the uncertainty inherent within, leading to a lack of confidence in the resulting analytics process and decisions made thereof. In comparison to traditional data techniques and platforms, artificial intelligence techniques (including machine learning, natural language processing, and computational intelligence) provide more accurate, faster, and scalable results in big data analytics. Previous research and surveys conducted on big data analytics tend to focus on one or two techniques or specific application domains. However, little work has been done in the field of uncertainty when applied to big data analytics as well as in the artificial intelligence techniques applied to the datasets. This article reviews previous work in big data analytics and presents a discussion of open challenges and future directions for recognizing and mitigating uncertainty in this domain.
first_indexed 2024-12-13T01:24:26Z
format Article
id doaj.art-4788a7a9a3c24eb3b32299ab8d7732f5
institution Directory Open Access Journal
issn 2196-1115
language English
last_indexed 2024-12-13T01:24:26Z
publishDate 2019-06-01
publisher SpringerOpen
record_format Article
series Journal of Big Data
spelling doaj.art-4788a7a9a3c24eb3b32299ab8d7732f52022-12-22T00:04:09ZengSpringerOpenJournal of Big Data2196-11152019-06-016111610.1186/s40537-019-0206-3Uncertainty in big data analytics: survey, opportunities, and challengesReihaneh H. Hariri0Erik M. Fredericks1Kate M. Bowers2Oakland UniversityOakland UniversityOakland UniversityAbstract Big data analytics has gained wide attention from both academia and industry as the demand for understanding trends in massive datasets increases. Recent developments in sensor networks, cyber-physical systems, and the ubiquity of the Internet of Things (IoT) have increased the collection of data (including health care, social media, smart cities, agriculture, finance, education, and more) to an enormous scale. However, the data collected from sensors, social media, financial records, etc. is inherently uncertain due to noise, incompleteness, and inconsistency. The analysis of such massive amounts of data requires advanced analytical techniques for efficiently reviewing and/or predicting future courses of action with high precision and advanced decision-making strategies. As the amount, variety, and speed of data increases, so too does the uncertainty inherent within, leading to a lack of confidence in the resulting analytics process and decisions made thereof. In comparison to traditional data techniques and platforms, artificial intelligence techniques (including machine learning, natural language processing, and computational intelligence) provide more accurate, faster, and scalable results in big data analytics. Previous research and surveys conducted on big data analytics tend to focus on one or two techniques or specific application domains. However, little work has been done in the field of uncertainty when applied to big data analytics as well as in the artificial intelligence techniques applied to the datasets. This article reviews previous work in big data analytics and presents a discussion of open challenges and future directions for recognizing and mitigating uncertainty in this domain.http://link.springer.com/article/10.1186/s40537-019-0206-3Big dataUncertaintyBig data analyticsArtificial intelligence
spellingShingle Reihaneh H. Hariri
Erik M. Fredericks
Kate M. Bowers
Uncertainty in big data analytics: survey, opportunities, and challenges
Journal of Big Data
Big data
Uncertainty
Big data analytics
Artificial intelligence
title Uncertainty in big data analytics: survey, opportunities, and challenges
title_full Uncertainty in big data analytics: survey, opportunities, and challenges
title_fullStr Uncertainty in big data analytics: survey, opportunities, and challenges
title_full_unstemmed Uncertainty in big data analytics: survey, opportunities, and challenges
title_short Uncertainty in big data analytics: survey, opportunities, and challenges
title_sort uncertainty in big data analytics survey opportunities and challenges
topic Big data
Uncertainty
Big data analytics
Artificial intelligence
url http://link.springer.com/article/10.1186/s40537-019-0206-3
work_keys_str_mv AT reihanehhhariri uncertaintyinbigdataanalyticssurveyopportunitiesandchallenges
AT erikmfredericks uncertaintyinbigdataanalyticssurveyopportunitiesandchallenges
AT katembowers uncertaintyinbigdataanalyticssurveyopportunitiesandchallenges