New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy

Long-run bifurcation analysis aims to describe the asymptotic behavior of a dynamical system. One of the main objectives of mathematical epidemiology is to determine the acute threshold between an infection’s persistence and its elimination. In this study, we use a more comprehensive SVIR epidemic m...

Full description

Bibliographic Details
Main Authors: Yassine Sabbar, Asad Khan, Anwarud Din, Mouhcine Tilioua
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/3/226
_version_ 1797611661063880704
author Yassine Sabbar
Asad Khan
Anwarud Din
Mouhcine Tilioua
author_facet Yassine Sabbar
Asad Khan
Anwarud Din
Mouhcine Tilioua
author_sort Yassine Sabbar
collection DOAJ
description Long-run bifurcation analysis aims to describe the asymptotic behavior of a dynamical system. One of the main objectives of mathematical epidemiology is to determine the acute threshold between an infection’s persistence and its elimination. In this study, we use a more comprehensive SVIR epidemic model with large jumps to tackle this and related challenging problems in epidemiology. The huge discontinuities arising from the complexity of the problem are modelled by four independent, tempered, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable quadratic Lévy processes. A new analytical method is used and for the proposed stochastic model, the critical value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula> is calculated. For strictly positive value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula>, the stationary and ergodic properties of the perturbed model are verified (continuation scenario). However, for a strictly negative value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula>, the model predicts that the infection will vanish exponentially (disappearance scenario). The current study incorporates a large number of earlier works and provides a novel analytical method that can successfully handle numerous stochastic models. This innovative approach can successfully handle a variety of stochastic models in a wide range of applications. For the tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable processes, the Rosinski (2007) algorithm with a specific Lévy measure is implemented as a numerical application. It is concluded that both noise intensities and parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> have a great influence on the dynamical transition of the model as well as on the shape of its associated probability density function.
first_indexed 2024-03-11T06:30:52Z
format Article
id doaj.art-4789c2ef70d14a3bb48e1542eacb6a12
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T06:30:52Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-4789c2ef70d14a3bb48e1542eacb6a122023-11-17T11:12:05ZengMDPI AGFractal and Fractional2504-31102023-03-017322610.3390/fractalfract7030226New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination StrategyYassine Sabbar0Asad Khan1Anwarud Din2Mouhcine Tilioua3MAIS Laboratory, MAMCS Group, FST Errachidia, Moulay Ismail University of Meknes, P.O. Box 509, Errachidia 52000, MoroccoSchool of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, ChinaDepartment of Mathematics, Sun Yat-sen University, Guangzhou 510006, ChinaMAIS Laboratory, MAMCS Group, FST Errachidia, Moulay Ismail University of Meknes, P.O. Box 509, Errachidia 52000, MoroccoLong-run bifurcation analysis aims to describe the asymptotic behavior of a dynamical system. One of the main objectives of mathematical epidemiology is to determine the acute threshold between an infection’s persistence and its elimination. In this study, we use a more comprehensive SVIR epidemic model with large jumps to tackle this and related challenging problems in epidemiology. The huge discontinuities arising from the complexity of the problem are modelled by four independent, tempered, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable quadratic Lévy processes. A new analytical method is used and for the proposed stochastic model, the critical value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula> is calculated. For strictly positive value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula>, the stationary and ergodic properties of the perturbed model are verified (continuation scenario). However, for a strictly negative value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="fraktur">R</mi><mn>0</mn><mo>🟉</mo></msubsup></semantics></math></inline-formula>, the model predicts that the infection will vanish exponentially (disappearance scenario). The current study incorporates a large number of earlier works and provides a novel analytical method that can successfully handle numerous stochastic models. This innovative approach can successfully handle a variety of stochastic models in a wide range of applications. For the tempered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable processes, the Rosinski (2007) algorithm with a specific Lévy measure is implemented as a numerical application. It is concluded that both noise intensities and parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> have a great influence on the dynamical transition of the model as well as on the shape of its associated probability density function.https://www.mdpi.com/2504-3110/7/3/226dynamical systemnoisebifurcationergodicitylévy processesjumps
spellingShingle Yassine Sabbar
Asad Khan
Anwarud Din
Mouhcine Tilioua
New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
Fractal and Fractional
dynamical system
noise
bifurcation
ergodicity
lévy processes
jumps
title New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
title_full New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
title_fullStr New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
title_full_unstemmed New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
title_short New Method to Investigate the Impact of Independent Quadratic <i>α</i>-Stable Poisson Jumps on the Dynamics of a Disease under Vaccination Strategy
title_sort new method to investigate the impact of independent quadratic i α i stable poisson jumps on the dynamics of a disease under vaccination strategy
topic dynamical system
noise
bifurcation
ergodicity
lévy processes
jumps
url https://www.mdpi.com/2504-3110/7/3/226
work_keys_str_mv AT yassinesabbar newmethodtoinvestigatetheimpactofindependentquadraticiaistablepoissonjumpsonthedynamicsofadiseaseundervaccinationstrategy
AT asadkhan newmethodtoinvestigatetheimpactofindependentquadraticiaistablepoissonjumpsonthedynamicsofadiseaseundervaccinationstrategy
AT anwaruddin newmethodtoinvestigatetheimpactofindependentquadraticiaistablepoissonjumpsonthedynamicsofadiseaseundervaccinationstrategy
AT mouhcinetilioua newmethodtoinvestigatetheimpactofindependentquadraticiaistablepoissonjumpsonthedynamicsofadiseaseundervaccinationstrategy