Matrix characterization of multidimensional subshifts of finite type

Let X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only...

Full description

Bibliographic Details
Main Authors: Puneet Sharma, Dileep Kumar
Format: Article
Language:English
Published: Universitat Politècnica de València 2019-10-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/11541
_version_ 1828826636154306560
author Puneet Sharma
Dileep Kumar
author_facet Puneet Sharma
Dileep Kumar
author_sort Puneet Sharma
collection DOAJ
description Let X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space X to exhibit periodic points.
first_indexed 2024-12-12T14:43:02Z
format Article
id doaj.art-478bdbbb908c4afc833fe907e0805a63
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-12T14:43:02Z
publishDate 2019-10-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-478bdbbb908c4afc833fe907e0805a632022-12-22T00:21:10ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472019-10-0120240741810.4995/agt.2019.115417660Matrix characterization of multidimensional subshifts of finite typePuneet Sharma0Dileep Kumar1Indian Institute of Technology JodhpurIndian Institute of Technology JodhpurLet X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space X to exhibit periodic points.https://polipapers.upv.es/index.php/AGT/article/view/11541multidimensional shift spacesshifts of finite typeperiodicity in multidimensional shifts of finite type
spellingShingle Puneet Sharma
Dileep Kumar
Matrix characterization of multidimensional subshifts of finite type
Applied General Topology
multidimensional shift spaces
shifts of finite type
periodicity in multidimensional shifts of finite type
title Matrix characterization of multidimensional subshifts of finite type
title_full Matrix characterization of multidimensional subshifts of finite type
title_fullStr Matrix characterization of multidimensional subshifts of finite type
title_full_unstemmed Matrix characterization of multidimensional subshifts of finite type
title_short Matrix characterization of multidimensional subshifts of finite type
title_sort matrix characterization of multidimensional subshifts of finite type
topic multidimensional shift spaces
shifts of finite type
periodicity in multidimensional shifts of finite type
url https://polipapers.upv.es/index.php/AGT/article/view/11541
work_keys_str_mv AT puneetsharma matrixcharacterizationofmultidimensionalsubshiftsoffinitetype
AT dileepkumar matrixcharacterizationofmultidimensionalsubshiftsoffinitetype