Matrix characterization of multidimensional subshifts of finite type
Let X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2019-10-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/AGT/article/view/11541 |
_version_ | 1828826636154306560 |
---|---|
author | Puneet Sharma Dileep Kumar |
author_facet | Puneet Sharma Dileep Kumar |
author_sort | Puneet Sharma |
collection | DOAJ |
description | Let X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space X to exhibit periodic points. |
first_indexed | 2024-12-12T14:43:02Z |
format | Article |
id | doaj.art-478bdbbb908c4afc833fe907e0805a63 |
institution | Directory Open Access Journal |
issn | 1576-9402 1989-4147 |
language | English |
last_indexed | 2024-12-12T14:43:02Z |
publishDate | 2019-10-01 |
publisher | Universitat Politècnica de València |
record_format | Article |
series | Applied General Topology |
spelling | doaj.art-478bdbbb908c4afc833fe907e0805a632022-12-22T00:21:10ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472019-10-0120240741810.4995/agt.2019.115417660Matrix characterization of multidimensional subshifts of finite typePuneet Sharma0Dileep Kumar1Indian Institute of Technology JodhpurIndian Institute of Technology JodhpurLet X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space X to exhibit periodic points.https://polipapers.upv.es/index.php/AGT/article/view/11541multidimensional shift spacesshifts of finite typeperiodicity in multidimensional shifts of finite type |
spellingShingle | Puneet Sharma Dileep Kumar Matrix characterization of multidimensional subshifts of finite type Applied General Topology multidimensional shift spaces shifts of finite type periodicity in multidimensional shifts of finite type |
title | Matrix characterization of multidimensional subshifts of finite type |
title_full | Matrix characterization of multidimensional subshifts of finite type |
title_fullStr | Matrix characterization of multidimensional subshifts of finite type |
title_full_unstemmed | Matrix characterization of multidimensional subshifts of finite type |
title_short | Matrix characterization of multidimensional subshifts of finite type |
title_sort | matrix characterization of multidimensional subshifts of finite type |
topic | multidimensional shift spaces shifts of finite type periodicity in multidimensional shifts of finite type |
url | https://polipapers.upv.es/index.php/AGT/article/view/11541 |
work_keys_str_mv | AT puneetsharma matrixcharacterizationofmultidimensionalsubshiftsoffinitetype AT dileepkumar matrixcharacterizationofmultidimensionalsubshiftsoffinitetype |