Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries

Abstract The practical application of lithium–sulfur batteries (LSBs) is severely hindered by the undesirable shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics of sulfur species. Herein, a series of ultrathin single‐atomic tungsten‐doped Co3O4 (Wx‐Co3O4) nanosheets as catalytic a...

Full description

Bibliographic Details
Main Authors: Sangni Wang, Riming Hu, Ding Yuan, Lei Zhang, Chao Wu, Tianyi Ma, Wei Yan, Rui Wang, Liang Liu, Xuchuan Jiang, Hua Kun Liu, Shi Xue Dou, Yuhai Dou, Jiantie Xu
Format: Article
Language:English
Published: Wiley 2023-08-01
Series:Carbon Energy
Subjects:
Online Access:https://doi.org/10.1002/cey2.329
_version_ 1797736067997106176
author Sangni Wang
Riming Hu
Ding Yuan
Lei Zhang
Chao Wu
Tianyi Ma
Wei Yan
Rui Wang
Liang Liu
Xuchuan Jiang
Hua Kun Liu
Shi Xue Dou
Yuhai Dou
Jiantie Xu
author_facet Sangni Wang
Riming Hu
Ding Yuan
Lei Zhang
Chao Wu
Tianyi Ma
Wei Yan
Rui Wang
Liang Liu
Xuchuan Jiang
Hua Kun Liu
Shi Xue Dou
Yuhai Dou
Jiantie Xu
author_sort Sangni Wang
collection DOAJ
description Abstract The practical application of lithium–sulfur batteries (LSBs) is severely hindered by the undesirable shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics of sulfur species. Herein, a series of ultrathin single‐atomic tungsten‐doped Co3O4 (Wx‐Co3O4) nanosheets as catalytic additives in the sulfur cathode for LSBs are rationally designed and synthesized. Benefiting from the enhanced catalytic activity and optimized electronic structure by W doping, the Wx‐Co3O4 not only reduces the shuttling of LiPSs but also decreases the energy barrier of sulfur redox reactions of sulfur species, leading to accelerated electrode kinetic. As a result, LSB cathodes with the use of 5.0 wt% W0.02‐Co3O4 as the electrocatalyst show the high reversible capacities of 1217.0 and 558.6 mAh g−1 at 0.2 and 5.0 C, respectively, and maintain a high reversible capacity of 644.6 mAh g−1 at 1.0 C (1.0 C = 1675 mA g−1) after 500 cycles. With a high sulfur loading of 5.5 mg cm−2 and electrolyte–electrode ratio of 8 μLelectrolyte mgsulfur−1, the 5.0 wt% W0.02‐Co3O4‐based sulfur cathode also retains a high reversible areal capacity of 3.86 mAh cm−2 at 0.1 C after 50 cycles with an initial capacity retention of 84.7%.
first_indexed 2024-03-12T13:08:15Z
format Article
id doaj.art-4798e87ad5eb4fd6be293c109113afb2
institution Directory Open Access Journal
issn 2637-9368
language English
last_indexed 2024-03-12T13:08:15Z
publishDate 2023-08-01
publisher Wiley
record_format Article
series Carbon Energy
spelling doaj.art-4798e87ad5eb4fd6be293c109113afb22023-08-28T08:53:45ZengWileyCarbon Energy2637-93682023-08-0158n/an/a10.1002/cey2.329Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteriesSangni Wang0Riming Hu1Ding Yuan2Lei Zhang3Chao Wu4Tianyi Ma5Wei Yan6Rui Wang7Liang Liu8Xuchuan Jiang9Hua Kun Liu10Shi Xue Dou11Yuhai Dou12Jiantie Xu13National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment, Pollution Control School of Environment and Energy South China University of Technology Guangzhou ChinaSchool of Materials Science and Engineering, Institute for Smart Materials & Engineering University of Jinan Jinan ChinaInstitute of Energy Materials Science University of Shanghai for Science and Technology Shanghai ChinaInstitute for Superconducting and Electronic Materials University of Wollongong Wollongong AustraliaInstitute for Superconducting and Electronic Materials University of Wollongong Wollongong AustraliaSchool of Science RMIT University Melbourne Victoria AustraliaState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai ChinaNational Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment, Pollution Control School of Environment and Energy South China University of Technology Guangzhou ChinaNational Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment, Pollution Control School of Environment and Energy South China University of Technology Guangzhou ChinaSchool of Materials Science and Engineering, Institute for Smart Materials & Engineering University of Jinan Jinan ChinaInstitute of Energy Materials Science University of Shanghai for Science and Technology Shanghai ChinaInstitute of Energy Materials Science University of Shanghai for Science and Technology Shanghai ChinaShandong Institute of Advanced Technology Jinan ChinaNational Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment, Pollution Control School of Environment and Energy South China University of Technology Guangzhou ChinaAbstract The practical application of lithium–sulfur batteries (LSBs) is severely hindered by the undesirable shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics of sulfur species. Herein, a series of ultrathin single‐atomic tungsten‐doped Co3O4 (Wx‐Co3O4) nanosheets as catalytic additives in the sulfur cathode for LSBs are rationally designed and synthesized. Benefiting from the enhanced catalytic activity and optimized electronic structure by W doping, the Wx‐Co3O4 not only reduces the shuttling of LiPSs but also decreases the energy barrier of sulfur redox reactions of sulfur species, leading to accelerated electrode kinetic. As a result, LSB cathodes with the use of 5.0 wt% W0.02‐Co3O4 as the electrocatalyst show the high reversible capacities of 1217.0 and 558.6 mAh g−1 at 0.2 and 5.0 C, respectively, and maintain a high reversible capacity of 644.6 mAh g−1 at 1.0 C (1.0 C = 1675 mA g−1) after 500 cycles. With a high sulfur loading of 5.5 mg cm−2 and electrolyte–electrode ratio of 8 μLelectrolyte mgsulfur−1, the 5.0 wt% W0.02‐Co3O4‐based sulfur cathode also retains a high reversible areal capacity of 3.86 mAh cm−2 at 0.1 C after 50 cycles with an initial capacity retention of 84.7%.https://doi.org/10.1002/cey2.329catalytic additiveslithium–sulfur batteriessingle‐atomic dopantsluggish redox kinetics
spellingShingle Sangni Wang
Riming Hu
Ding Yuan
Lei Zhang
Chao Wu
Tianyi Ma
Wei Yan
Rui Wang
Liang Liu
Xuchuan Jiang
Hua Kun Liu
Shi Xue Dou
Yuhai Dou
Jiantie Xu
Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
Carbon Energy
catalytic additives
lithium–sulfur batteries
single‐atomic dopant
sluggish redox kinetics
title Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
title_full Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
title_fullStr Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
title_full_unstemmed Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
title_short Single‐atomic tungsten‐doped Co3O4 nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries
title_sort single atomic tungsten doped co3o4 nanosheets for enhanced electrochemical kinetics in lithium sulfur batteries
topic catalytic additives
lithium–sulfur batteries
single‐atomic dopant
sluggish redox kinetics
url https://doi.org/10.1002/cey2.329
work_keys_str_mv AT sangniwang singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT riminghu singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT dingyuan singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT leizhang singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT chaowu singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT tianyima singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT weiyan singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT ruiwang singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT liangliu singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT xuchuanjiang singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT huakunliu singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT shixuedou singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT yuhaidou singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries
AT jiantiexu singleatomictungstendopedco3o4nanosheetsforenhancedelectrochemicalkineticsinlithiumsulfurbatteries