Accurate determination of electrical conductance in carbon nanostructures

Electrical characterization of nanostructures, such as nanotubes and wires, is a demanding task that is vital for future applications of nanomaterials. The nanostructures should ideally be analyzed in a free-standing state and also allow for other material characterizations to be made of the same in...

Full description

Bibliographic Details
Main Authors: Mattias Flygare, Krister Svensson
Format: Article
Language:English
Published: IOP Publishing 2022-01-01
Series:Materials Research Express
Subjects:
Online Access:https://doi.org/10.1088/2053-1591/ac5e21
Description
Summary:Electrical characterization of nanostructures, such as nanotubes and wires, is a demanding task that is vital for future applications of nanomaterials. The nanostructures should ideally be analyzed in a free-standing state and also allow for other material characterizations to be made of the same individual nanostructures. Several methods have been used for electrical characterizations of carbon nanotubes in the past. The results are widely spread, both between different characterizations methods and within the same materials. This raises questions regarding the reliability of different methods and their accuracy, and there is a need for a measurement standard and classification scheme for carbon nanotube materials. Here we examine a two-probe method performed inside a transmission electron microscope in detail, addressing specifically the accuracy by which the electrical conductivity of individual carbon nanotubes can be determined. We show that two-probe methods can be very reliable using a suitable thermal cleaning method of the contact points. The linear resistance of the outermost nanotube wall can thus be accurately determined even for the highest crystallinity materials, where the linear resistance is only a few kΩ/μm. The method can thereby by used as a valuable tool for future classification schemes of various nanotube material classes.
ISSN:2053-1591