Summary: | Composite materials have been increasingly used in both researches and industries, given their wide range of innovative applications and configurations. High-performance hybrid fabric-reinforced plastics stand out in this sector. In the present research, an epoxy-based vinyl ester resin laminate reinforced with bidirectional hybrid fabric consisting of carbon and Kevlar fibers is developed. In order to determine its mechanical properties and damage mechanism considering the anisotropy and the presence of geometric discontinuity (circular hole), this research focused on both experimental and analytical aspect. Concerning to geometric discontinuity, in the vicinity of the hole (known as a stress concentration area), characteristic distances ao and do associated to ASC (Average Stress Criterion) and PSC (Point Stress Criterion) failure theories, respectively, were determined. All the study of the composite material mechanical behavior was conducted based on uniaxial tensile tests. Their results show higher losses in the mechanical properties of the hybrid laminate, with respect to the anisotropy and the presence of the central hole, mainly when the orientation of the Kevlar fibers coincides with the direction of the applied load.
|