Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks

Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller c...

Full description

Bibliographic Details
Main Authors: Changqing Xia, Xi Jin, Linghe Kong, Peng Zeng
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/7/1674
Description
Summary:Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations.
ISSN:1424-8220