3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells

Abstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation ar...

Full description

Bibliographic Details
Main Authors: Giovanni Fevola, Christina Ossig, Mariana Verezhak, Jan Garrevoet, Harvey L. Guthrey, Martin Seyrich, Dennis Brückner, Johannes Hagemann, Frank Seiboth, Andreas Schropp, Gerald Falkenberg, Peter S. Jørgensen, Azat Slyamov, Zoltan I. Balogh, Christian Strelow, Tobias Kipp, Alf Mews, Christian G. Schroer, Shiro Nishiwaki, Romain Carron, Jens W. Andreasen, Michael E. Stuckelberger
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202301873
_version_ 1797356396780453888
author Giovanni Fevola
Christina Ossig
Mariana Verezhak
Jan Garrevoet
Harvey L. Guthrey
Martin Seyrich
Dennis Brückner
Johannes Hagemann
Frank Seiboth
Andreas Schropp
Gerald Falkenberg
Peter S. Jørgensen
Azat Slyamov
Zoltan I. Balogh
Christian Strelow
Tobias Kipp
Alf Mews
Christian G. Schroer
Shiro Nishiwaki
Romain Carron
Jens W. Andreasen
Michael E. Stuckelberger
author_facet Giovanni Fevola
Christina Ossig
Mariana Verezhak
Jan Garrevoet
Harvey L. Guthrey
Martin Seyrich
Dennis Brückner
Johannes Hagemann
Frank Seiboth
Andreas Schropp
Gerald Falkenberg
Peter S. Jørgensen
Azat Slyamov
Zoltan I. Balogh
Christian Strelow
Tobias Kipp
Alf Mews
Christian G. Schroer
Shiro Nishiwaki
Romain Carron
Jens W. Andreasen
Michael E. Stuckelberger
author_sort Giovanni Fevola
collection DOAJ
description Abstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation artifacts. Here, synchrotron imaging is performed on a fully operational as‐deposited solar cell containing a few tens of voids. By measuring operando current and X‐ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material‐deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.
first_indexed 2024-03-08T14:26:01Z
format Article
id doaj.art-47a5b53e986041d0b480c3c5db3bebed
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-03-08T14:26:01Z
publishDate 2024-01-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-47a5b53e986041d0b480c3c5db3bebed2024-01-13T04:23:06ZengWileyAdvanced Science2198-38442024-01-01112n/an/a10.1002/advs.2023018733D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar CellsGiovanni Fevola0Christina Ossig1Mariana Verezhak2Jan Garrevoet3Harvey L. Guthrey4Martin Seyrich5Dennis Brückner6Johannes Hagemann7Frank Seiboth8Andreas Schropp9Gerald Falkenberg10Peter S. Jørgensen11Azat Slyamov12Zoltan I. Balogh13Christian Strelow14Tobias Kipp15Alf Mews16Christian G. Schroer17Shiro Nishiwaki18Romain Carron19Jens W. Andreasen20Michael E. Stuckelberger21Center for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyPaul Scherrer Institute PSI Forschungsstrasse 111 Villigen 5232 SwitzerlandDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyNational Renewable Energy Laboratory 16253 Denver West Parkway Golden CO 80401 USACenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkDTU Nanolab Technical University of Denmark DTU Ørsteds Plads 347 Kongens Lyngby 2800 DenmarkInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyLaboratory for Thin Films and Photovoltaics Empa Ueberlandstrasse 129 Dübendorf 8600 SwitzerlandLaboratory for Thin Films and Photovoltaics Empa Ueberlandstrasse 129 Dübendorf 8600 SwitzerlandDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyAbstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation artifacts. Here, synchrotron imaging is performed on a fully operational as‐deposited solar cell containing a few tens of voids. By measuring operando current and X‐ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material‐deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.https://doi.org/10.1002/advs.202301873CIGSmultimodal X‐ray imagingnano‐tomographyptychographythin film solar cells
spellingShingle Giovanni Fevola
Christina Ossig
Mariana Verezhak
Jan Garrevoet
Harvey L. Guthrey
Martin Seyrich
Dennis Brückner
Johannes Hagemann
Frank Seiboth
Andreas Schropp
Gerald Falkenberg
Peter S. Jørgensen
Azat Slyamov
Zoltan I. Balogh
Christian Strelow
Tobias Kipp
Alf Mews
Christian G. Schroer
Shiro Nishiwaki
Romain Carron
Jens W. Andreasen
Michael E. Stuckelberger
3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
Advanced Science
CIGS
multimodal X‐ray imaging
nano‐tomography
ptychography
thin film solar cells
title 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
title_full 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
title_fullStr 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
title_full_unstemmed 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
title_short 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
title_sort 3d and multimodal x ray microscopy reveals the impact of voids in cigs solar cells
topic CIGS
multimodal X‐ray imaging
nano‐tomography
ptychography
thin film solar cells
url https://doi.org/10.1002/advs.202301873
work_keys_str_mv AT giovannifevola 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT christinaossig 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT marianaverezhak 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT jangarrevoet 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT harveylguthrey 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT martinseyrich 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT dennisbruckner 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT johanneshagemann 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT frankseiboth 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT andreasschropp 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT geraldfalkenberg 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT petersjørgensen 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT azatslyamov 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT zoltanibalogh 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT christianstrelow 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT tobiaskipp 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT alfmews 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT christiangschroer 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT shironishiwaki 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT romaincarron 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT jenswandreasen 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells
AT michaelestuckelberger 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells