3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells
Abstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation ar...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-01-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.202301873 |
_version_ | 1797356396780453888 |
---|---|
author | Giovanni Fevola Christina Ossig Mariana Verezhak Jan Garrevoet Harvey L. Guthrey Martin Seyrich Dennis Brückner Johannes Hagemann Frank Seiboth Andreas Schropp Gerald Falkenberg Peter S. Jørgensen Azat Slyamov Zoltan I. Balogh Christian Strelow Tobias Kipp Alf Mews Christian G. Schroer Shiro Nishiwaki Romain Carron Jens W. Andreasen Michael E. Stuckelberger |
author_facet | Giovanni Fevola Christina Ossig Mariana Verezhak Jan Garrevoet Harvey L. Guthrey Martin Seyrich Dennis Brückner Johannes Hagemann Frank Seiboth Andreas Schropp Gerald Falkenberg Peter S. Jørgensen Azat Slyamov Zoltan I. Balogh Christian Strelow Tobias Kipp Alf Mews Christian G. Schroer Shiro Nishiwaki Romain Carron Jens W. Andreasen Michael E. Stuckelberger |
author_sort | Giovanni Fevola |
collection | DOAJ |
description | Abstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation artifacts. Here, synchrotron imaging is performed on a fully operational as‐deposited solar cell containing a few tens of voids. By measuring operando current and X‐ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material‐deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance. |
first_indexed | 2024-03-08T14:26:01Z |
format | Article |
id | doaj.art-47a5b53e986041d0b480c3c5db3bebed |
institution | Directory Open Access Journal |
issn | 2198-3844 |
language | English |
last_indexed | 2024-03-08T14:26:01Z |
publishDate | 2024-01-01 |
publisher | Wiley |
record_format | Article |
series | Advanced Science |
spelling | doaj.art-47a5b53e986041d0b480c3c5db3bebed2024-01-13T04:23:06ZengWileyAdvanced Science2198-38442024-01-01112n/an/a10.1002/advs.2023018733D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar CellsGiovanni Fevola0Christina Ossig1Mariana Verezhak2Jan Garrevoet3Harvey L. Guthrey4Martin Seyrich5Dennis Brückner6Johannes Hagemann7Frank Seiboth8Andreas Schropp9Gerald Falkenberg10Peter S. Jørgensen11Azat Slyamov12Zoltan I. Balogh13Christian Strelow14Tobias Kipp15Alf Mews16Christian G. Schroer17Shiro Nishiwaki18Romain Carron19Jens W. Andreasen20Michael E. Stuckelberger21Center for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyPaul Scherrer Institute PSI Forschungsstrasse 111 Villigen 5232 SwitzerlandDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyNational Renewable Energy Laboratory 16253 Denver West Parkway Golden CO 80401 USACenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDeutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkDTU Nanolab Technical University of Denmark DTU Ørsteds Plads 347 Kongens Lyngby 2800 DenmarkInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyInstitut für Physikalische Chemie Universität Hamburg Grindelallee 117 20146 Hamburg GermanyCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyLaboratory for Thin Films and Photovoltaics Empa Ueberlandstrasse 129 Dübendorf 8600 SwitzerlandLaboratory for Thin Films and Photovoltaics Empa Ueberlandstrasse 129 Dübendorf 8600 SwitzerlandDepartment of Energy Conversion and Storage Technical University of Denmark DTU Fysikvej 310 Kongens Lyngby 2800 DenmarkCenter for X‐ray and Nano Science CXNS Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg GermanyAbstract Small voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation artifacts. Here, synchrotron imaging is performed on a fully operational as‐deposited solar cell containing a few tens of voids. By measuring operando current and X‐ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material‐deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.https://doi.org/10.1002/advs.202301873CIGSmultimodal X‐ray imagingnano‐tomographyptychographythin film solar cells |
spellingShingle | Giovanni Fevola Christina Ossig Mariana Verezhak Jan Garrevoet Harvey L. Guthrey Martin Seyrich Dennis Brückner Johannes Hagemann Frank Seiboth Andreas Schropp Gerald Falkenberg Peter S. Jørgensen Azat Slyamov Zoltan I. Balogh Christian Strelow Tobias Kipp Alf Mews Christian G. Schroer Shiro Nishiwaki Romain Carron Jens W. Andreasen Michael E. Stuckelberger 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells Advanced Science CIGS multimodal X‐ray imaging nano‐tomography ptychography thin film solar cells |
title | 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells |
title_full | 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells |
title_fullStr | 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells |
title_full_unstemmed | 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells |
title_short | 3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells |
title_sort | 3d and multimodal x ray microscopy reveals the impact of voids in cigs solar cells |
topic | CIGS multimodal X‐ray imaging nano‐tomography ptychography thin film solar cells |
url | https://doi.org/10.1002/advs.202301873 |
work_keys_str_mv | AT giovannifevola 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT christinaossig 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT marianaverezhak 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT jangarrevoet 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT harveylguthrey 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT martinseyrich 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT dennisbruckner 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT johanneshagemann 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT frankseiboth 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT andreasschropp 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT geraldfalkenberg 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT petersjørgensen 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT azatslyamov 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT zoltanibalogh 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT christianstrelow 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT tobiaskipp 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT alfmews 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT christiangschroer 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT shironishiwaki 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT romaincarron 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT jenswandreasen 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells AT michaelestuckelberger 3dandmultimodalxraymicroscopyrevealstheimpactofvoidsincigssolarcells |