Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain

In this paper, considering the various important applications of Miller–Ross functions in the fields of applied sciences, we introduced a new class of analytic functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>...

Full description

Bibliographic Details
Main Authors: Gangadharan Murugusundaramoorthy, Hatun Özlem Güney, Daniel Breaz
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/6/795
_version_ 1827305702444498944
author Gangadharan Murugusundaramoorthy
Hatun Özlem Güney
Daniel Breaz
author_facet Gangadharan Murugusundaramoorthy
Hatun Özlem Güney
Daniel Breaz
author_sort Gangadharan Murugusundaramoorthy
collection DOAJ
description In this paper, considering the various important applications of Miller–Ross functions in the fields of applied sciences, we introduced a new class of analytic functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo></mrow></semantics></math></inline-formula> utilizing the concept of Miller–Ross functions in the region of the Janowski domain. Furthermore, we obtained initial coefficients of Taylor series expansion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo></mrow></semantics></math></inline-formula> coefficient inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the Fekete–Szegö problem. We also covered some key geometric properties for functions <i>f</i> in this newly formed class, such as the necessary and sufficient condition, convex combination, sequential subordination and partial sum findings.
first_indexed 2024-04-24T18:02:26Z
format Article
id doaj.art-47a94100e9fd4da1b646707550ed3ecc
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-24T18:02:26Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-47a94100e9fd4da1b646707550ed3ecc2024-03-27T13:52:56ZengMDPI AGMathematics2227-73902024-03-0112679510.3390/math12060795Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski DomainGangadharan Murugusundaramoorthy0Hatun Özlem Güney1Daniel Breaz2Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, IndiaDepartment of Mathematics, Faculty of Science, Dicle University, Diyarbakır 21280, TürkiyeDepartment of Exact Sciences and Engineering, Universitatea 1 Decembrie 1918 din Alba Iulia, 510009 Alba Iulia, RomaniaIn this paper, considering the various important applications of Miller–Ross functions in the fields of applied sciences, we introduced a new class of analytic functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo></mrow></semantics></math></inline-formula> utilizing the concept of Miller–Ross functions in the region of the Janowski domain. Furthermore, we obtained initial coefficients of Taylor series expansion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo></mrow></semantics></math></inline-formula> coefficient inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the Fekete–Szegö problem. We also covered some key geometric properties for functions <i>f</i> in this newly formed class, such as the necessary and sufficient condition, convex combination, sequential subordination and partial sum findings.https://www.mdpi.com/2227-7390/12/6/795analytic functionstarlike functionsubordinationFekete–Szegö inequalityMiller–Ross distribution series
spellingShingle Gangadharan Murugusundaramoorthy
Hatun Özlem Güney
Daniel Breaz
Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
Mathematics
analytic function
starlike function
subordination
Fekete–Szegö inequality
Miller–Ross distribution series
title Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
title_full Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
title_fullStr Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
title_full_unstemmed Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
title_short Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
title_sort starlike functions of the miller ross type poisson distribution in the janowski domain
topic analytic function
starlike function
subordination
Fekete–Szegö inequality
Miller–Ross distribution series
url https://www.mdpi.com/2227-7390/12/6/795
work_keys_str_mv AT gangadharanmurugusundaramoorthy starlikefunctionsofthemillerrosstypepoissondistributioninthejanowskidomain
AT hatunozlemguney starlikefunctionsofthemillerrosstypepoissondistributioninthejanowskidomain
AT danielbreaz starlikefunctionsofthemillerrosstypepoissondistributioninthejanowskidomain