Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China

Soil salinization is spread in the dryland of NW China due to the dry or extreme dry climate. Increased salinization damages the health and function of soil systems and influences the microbial community structure and function. Some studies have been conducted to reveal the microbial community struc...

Full description

Bibliographic Details
Main Authors: Jianjun Yang, Wenjing Li, Dexiong Teng, Xiaodong Yang, Yijun Zhang, Yan Li
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/10/11/2183
_version_ 1797467167385452544
author Jianjun Yang
Wenjing Li
Dexiong Teng
Xiaodong Yang
Yijun Zhang
Yan Li
author_facet Jianjun Yang
Wenjing Li
Dexiong Teng
Xiaodong Yang
Yijun Zhang
Yan Li
author_sort Jianjun Yang
collection DOAJ
description Soil salinization is spread in the dryland of NW China due to the dry or extreme dry climate. Increased salinization damages the health and function of soil systems and influences the microbial community structure and function. Some studies have been conducted to reveal the microbial community structure and isolate the microorganisms of saline soil or salt-lake sediments in this region. However, the functions of microorganisms and their response to salinization, i.e., their adaptation strategy to a wide salinization range in arid environments, are less understood. Here, we applied metagenomics technology to investigate the microbial community structure, function, and their relationship with salinization, and discussed the adaptative strategy of microorganisms to different saline environments. A total of 42 samples were sequenced on the Illumina PE500 platform. The archaea and bacteria constituted the dominant kingdoms; Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes were the dominant bacterial phyla; and Euryarchaeota were the dominant archaeal phylum. The microbial communities showed significant structure divergence according to the salt concentration (saline (mean EC 22 mS/cm) and hypersaline (mean EC 70 mS/cm)), wherein the communities were dominated by bacteria in saline soils and archaea in hypersaline soils. Most of the dominant bacterial representation decreased with salinity, while the archaea increased with salinity. KEGG functional annotation showed that at level 2, the cell motility, environmental adaptation, signal transduction, signaling molecules and interaction, glycan biosynthesis and metabolism, and metabolism of other amino acids were reduced from saline to hypersaline, whereas the metabolism of cofactors and vitamins, folding sorting and degradation, replication and repair, transcription and translation, amino acid biosynthesis, glycolysis/gluconeogenesis, and carbon fixation increased with salinity. The increased salt content decreased the carbohydrate activities of microorganisms. The osmolyte regulation substance synthesis and absorption-related genes were more abundant in saline soils than in hypersaline soils, whereas the Na<sup>+</sup>/H<sup>+</sup> antiporter genes (<i>mnhB-E</i>) and H<sup>+</sup>/Na<sup>+</sup>-transporting ATPase genes (<i>atpA-F</i>, <i>I</i>, <i>K</i>) were significantly higher in hypersaline soils. This indicated that in saline soils, microorganisms primarily synthesize and/or uptake compatible solutes to cope with osmotic stress, whereas in the hypersaline habitat, the high-salt-in strategy was predicated to be adopted by the halophilic/extremely halophilic microorganisms, coupled with a high abundance of replication and repair, cofactors and vitamin metabolism, nucleotide metabolism, and carbon fixation to provide energy and ensure cell regeneration. In conclusion, increases in salinity influence the microbial communities’ structure and function, as well as the adaptation of microorganisms.
first_indexed 2024-03-09T18:49:48Z
format Article
id doaj.art-47aa510ccfa548f3b25989967fd950ba
institution Directory Open Access Journal
issn 2076-2607
language English
last_indexed 2024-03-09T18:49:48Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Microorganisms
spelling doaj.art-47aa510ccfa548f3b25989967fd950ba2023-11-24T05:57:04ZengMDPI AGMicroorganisms2076-26072022-11-011011218310.3390/microorganisms10112183Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, ChinaJianjun Yang0Wenjing Li1Dexiong Teng2Xiaodong Yang3Yijun Zhang4Yan Li5College of Ecology and Environment, Xinjiang University, Urumqi 830046, ChinaCollege of Ecology and Environment, Xinjiang University, Urumqi 830046, ChinaInstitute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, ChinaDepartment of Geography & Spatial Information Technology, Ningbo University, Ningbo 315211, ChinaCollege of Ecology and Environment, Xinjiang University, Urumqi 830046, ChinaCollege of Ecology and Environment, Xinjiang University, Urumqi 830046, ChinaSoil salinization is spread in the dryland of NW China due to the dry or extreme dry climate. Increased salinization damages the health and function of soil systems and influences the microbial community structure and function. Some studies have been conducted to reveal the microbial community structure and isolate the microorganisms of saline soil or salt-lake sediments in this region. However, the functions of microorganisms and their response to salinization, i.e., their adaptation strategy to a wide salinization range in arid environments, are less understood. Here, we applied metagenomics technology to investigate the microbial community structure, function, and their relationship with salinization, and discussed the adaptative strategy of microorganisms to different saline environments. A total of 42 samples were sequenced on the Illumina PE500 platform. The archaea and bacteria constituted the dominant kingdoms; Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes were the dominant bacterial phyla; and Euryarchaeota were the dominant archaeal phylum. The microbial communities showed significant structure divergence according to the salt concentration (saline (mean EC 22 mS/cm) and hypersaline (mean EC 70 mS/cm)), wherein the communities were dominated by bacteria in saline soils and archaea in hypersaline soils. Most of the dominant bacterial representation decreased with salinity, while the archaea increased with salinity. KEGG functional annotation showed that at level 2, the cell motility, environmental adaptation, signal transduction, signaling molecules and interaction, glycan biosynthesis and metabolism, and metabolism of other amino acids were reduced from saline to hypersaline, whereas the metabolism of cofactors and vitamins, folding sorting and degradation, replication and repair, transcription and translation, amino acid biosynthesis, glycolysis/gluconeogenesis, and carbon fixation increased with salinity. The increased salt content decreased the carbohydrate activities of microorganisms. The osmolyte regulation substance synthesis and absorption-related genes were more abundant in saline soils than in hypersaline soils, whereas the Na<sup>+</sup>/H<sup>+</sup> antiporter genes (<i>mnhB-E</i>) and H<sup>+</sup>/Na<sup>+</sup>-transporting ATPase genes (<i>atpA-F</i>, <i>I</i>, <i>K</i>) were significantly higher in hypersaline soils. This indicated that in saline soils, microorganisms primarily synthesize and/or uptake compatible solutes to cope with osmotic stress, whereas in the hypersaline habitat, the high-salt-in strategy was predicated to be adopted by the halophilic/extremely halophilic microorganisms, coupled with a high abundance of replication and repair, cofactors and vitamin metabolism, nucleotide metabolism, and carbon fixation to provide energy and ensure cell regeneration. In conclusion, increases in salinity influence the microbial communities’ structure and function, as well as the adaptation of microorganisms.https://www.mdpi.com/2076-2607/10/11/2183metagenomics technologysoil salinizationhypersalineKEGG annotationadaptation strategyosmolyte regulation
spellingShingle Jianjun Yang
Wenjing Li
Dexiong Teng
Xiaodong Yang
Yijun Zhang
Yan Li
Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
Microorganisms
metagenomics technology
soil salinization
hypersaline
KEGG annotation
adaptation strategy
osmolyte regulation
title Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
title_full Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
title_fullStr Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
title_full_unstemmed Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
title_short Metagenomic Insights into Microbial Community Structure, Function, and Salt Adaptation in Saline Soils of Arid Land, China
title_sort metagenomic insights into microbial community structure function and salt adaptation in saline soils of arid land china
topic metagenomics technology
soil salinization
hypersaline
KEGG annotation
adaptation strategy
osmolyte regulation
url https://www.mdpi.com/2076-2607/10/11/2183
work_keys_str_mv AT jianjunyang metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina
AT wenjingli metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina
AT dexiongteng metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina
AT xiaodongyang metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina
AT yijunzhang metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina
AT yanli metagenomicinsightsintomicrobialcommunitystructurefunctionandsaltadaptationinsalinesoilsofaridlandchina