The Influence of Admixtures to the Signal of an Electromagnetic Flow Meter

Measurement error in an electromagnetic flow meter appears if magnetic and electric properties of admixtures are different from that of the fluid. Expressions of the error, which depends on volume concentration, permeability, and electric conductivity of particles were obtained by approximating the...

Full description

Bibliographic Details
Main Authors: Juozapas Arvydas Virbalis, Roma Račkienė, Miglė Kriuglaitė-Jarašiūnienė, Konstantinas Otas
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/5/772
Description
Summary:Measurement error in an electromagnetic flow meter appears if magnetic and electric properties of admixtures are different from that of the fluid. Expressions of the error, which depends on volume concentration, permeability, and electric conductivity of particles were obtained by approximating the particles’ shape as an ellipsoid. Components of the error, which appear inside particles and outside particles in active zone of flow meter, with any canal form are investigated. Expressions of the error are presented assuming that particles are oriented in various directions with respect of the flow direction and are spinning. Different cases of magnetic and electric admixtures properties are discussed. Error expression obtained for flows with nonconductive and nonmagnetic particles coincides with experimental and modelling results obtained by other explorers for flows with air bubbles. Magnetic particles with high electric conductivity are especially dangerous. Extra measurement error in this case greatly depends on the shape of the particle. Measurement error increases if particle shape differs from a sphere. The complementary measurement error can exceed the volume concentration of particles by ten times if the ratio between the longest and the shortest axes of ellipsoid exceeds 3.
ISSN:1996-1073