Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images
Computed tomography (CT) images play an important role due to effectiveness and accessibility, however, motion artifacts may obscure or simulate pathology and dramatically degrade the diagnosis accuracy. In recent years, convolutional neural networks (CNNs) have achieved state-of-the-art performance...
Główni autorzy: | Yiwen Liu, Tao Wen, Wei Sun, Zhenyu Liu, Xiaoying Song, Xuan He, Shuo Zhang, Zhenning Wu |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2022-07-01
|
Seria: | Sensors |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/1424-8220/22/15/5666 |
Podobne zapisy
-
Detection and Classification of Artifact Distortions in Optical Motion Capture Sequences
od: Przemysław Skurowski, i wsp.
Wydane: (2022-05-01) -
Cycle Consistent Generative Motion Artifact Correction in Coronary Computed Tomography Angiography
od: Amal Muhammad Saleem, i wsp.
Wydane: (2024-02-01) -
Common computed tomography artifact: source and avoidance
od: Amel F. Alzain, i wsp.
Wydane: (2021-06-01) -
Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography
od: Sergey Y. Ksenofontov, i wsp.
Wydane: (2023-06-01) -
Motion artifact detection in colonoscopy images
od: Kaçmaz Rukiye Nur, i wsp.
Wydane: (2018-07-01)