Radioactive Hot-spot Detection Using Unmanned Aerial Vehicle Surveillance

This work proposes a solution to identify the number of sources of radiation, as well as their respective intensities and locations based on data acquired by Global Positioning System (GPS) receivers and affordable radiological sensors, such as Geiger-M¨uller counters (GMC). An optimization algorith...

Full description

Bibliographic Details
Main Authors: Brouwer Yoeri, Vale Alberto, Macedo Duarte, Gonçalves Bruno, Fernandes Horácio
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/01/epjconf_animma2019_06005.pdf
Description
Summary:This work proposes a solution to identify the number of sources of radiation, as well as their respective intensities and locations based on data acquired by Global Positioning System (GPS) receivers and affordable radiological sensors, such as Geiger-M¨uller counters (GMC). An optimization algorithm is required to minimize the estimation error in terms of location, intensity and number of sources of radiation given all the intensity measurements acquired in different locations, taking into account the sensors’ models, background radiation intensity values and noise. Experimental results were achieved in a laboratory with controlled sources of radiation. The solution was also tested with real data gathered by a GMC connected to a mobile phone with a software application developed by the authors to synchronize the sensor readings with GPS data. The sensor and the mobile phone are attached to a quadcopter flying over the scenario with sources of radiation.
ISSN:2100-014X