Laboratory-Scale Optimization of Celestine Concentration Using a Hydrocyclone System

A pilot hydrocyclone plant was used to concentrate medium-grade celestine ore (67% celestine) from the Montevive deposit in Granada (Spain) by using a dense media concentration (DMS) process. To optimize the concentration process, several types of heavy minerals (coarse, fine C40 ferrosilicon and/or...

Full description

Bibliographic Details
Main Authors: Noemi Ariza-Rodríguez, Alejandro B. Rodríguez-Navarro, Mónica Calero de Hoces, Mario J. Muñoz-Batista
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/18/10206
Description
Summary:A pilot hydrocyclone plant was used to concentrate medium-grade celestine ore (67% celestine) from the Montevive deposit in Granada (Spain) by using a dense media concentration (DMS) process. To optimize the concentration process, several types of heavy minerals (coarse, fine C40 ferrosilicon and/or magnetite) were used to prepare a dense media with a constant density of 3.0 kg/L. Then, the dense media (loaded with run-of-mine celestine mineral) was fed into the hydrocyclone system. The mineral was then separated into two streams, the first containing the mineral fractions that float (over stream) and the second containing fractions that sink (under stream) in the dense media. Next, the heavy minerals (ferrosilicon and/or magnetite) were recovered from the dense media using magnetic separation. The celestine mineral recovered from each stream was divided into two fractions with particles size above or below 250 μm to study the effect of the mineral particle size on the separation process. Their mineral composition was quantified by X-ray diffraction (XRD) using the Rietveld method. The celestine is preferentially concentrated in the under stream in the mineral fraction with particles larger than 250 μm (up to 90% celestine). The optimum results (highest % of celestine) were obtained after desliming and using the ferrosilicon C40 medium, which has the smallest particle size (<40 μm) of all media used. The results of this study show that medium-grade celestine mineral accumulated in the mine tailings can be efficiently concentrated using a DMS process, which could help in making mine operations more sustainable and eco-friendlier.
ISSN:2076-3417