Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats

Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been...

Full description

Bibliographic Details
Main Authors: Evan Thielen, Marc Oria, Miki Watanabe-Chailland, Kristin Lampe, Lindsey Romick-Rosendale, Jose L. Peiro
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Metabolites
Subjects:
Online Access:https://www.mdpi.com/2218-1989/13/5/670
Description
Summary:Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.
ISSN:2218-1989