Strongly singular integrals along curves on α-modulation spaces

Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \...

Full description

Bibliographic Details
Main Authors: Xiaomei Wu, Xiao Yu
Format: Article
Language:English
Published: SpringerOpen 2017-08-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1458-0
Description
Summary:Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \vert ^{\gamma}}\,dt $$ along homogeneous curves Γ θ ( t ) $\Gamma_{\theta}(t)$ . We prove that T n , β , γ $T_{n, \beta, \gamma}$ is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces.
ISSN:1029-242X