Strongly singular integrals along curves on α-modulation spaces
Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-08-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1458-0 |
_version_ | 1819207355530739712 |
---|---|
author | Xiaomei Wu Xiao Yu |
author_facet | Xiaomei Wu Xiao Yu |
author_sort | Xiaomei Wu |
collection | DOAJ |
description | Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \vert ^{\gamma}}\,dt $$ along homogeneous curves Γ θ ( t ) $\Gamma_{\theta}(t)$ . We prove that T n , β , γ $T_{n, \beta, \gamma}$ is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces. |
first_indexed | 2024-12-23T05:22:11Z |
format | Article |
id | doaj.art-47defc99b5da4e9cb3fe2d50220328e1 |
institution | Directory Open Access Journal |
issn | 1029-242X |
language | English |
last_indexed | 2024-12-23T05:22:11Z |
publishDate | 2017-08-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-47defc99b5da4e9cb3fe2d50220328e12022-12-21T17:58:40ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-08-012017111310.1186/s13660-017-1458-0Strongly singular integrals along curves on α-modulation spacesXiaomei Wu0Xiao Yu1Xingzhi College, Zhejiang Normal UniversityDepartment of Mathematics, Shangrao Normal UniversityAbstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \vert ^{\gamma}}\,dt $$ along homogeneous curves Γ θ ( t ) $\Gamma_{\theta}(t)$ . We prove that T n , β , γ $T_{n, \beta, \gamma}$ is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces.http://link.springer.com/article/10.1186/s13660-017-1458-0α-modulation spacesstrongly singular integralsBesov spaceshomogeneous curves |
spellingShingle | Xiaomei Wu Xiao Yu Strongly singular integrals along curves on α-modulation spaces Journal of Inequalities and Applications α-modulation spaces strongly singular integrals Besov spaces homogeneous curves |
title | Strongly singular integrals along curves on α-modulation spaces |
title_full | Strongly singular integrals along curves on α-modulation spaces |
title_fullStr | Strongly singular integrals along curves on α-modulation spaces |
title_full_unstemmed | Strongly singular integrals along curves on α-modulation spaces |
title_short | Strongly singular integrals along curves on α-modulation spaces |
title_sort | strongly singular integrals along curves on α modulation spaces |
topic | α-modulation spaces strongly singular integrals Besov spaces homogeneous curves |
url | http://link.springer.com/article/10.1186/s13660-017-1458-0 |
work_keys_str_mv | AT xiaomeiwu stronglysingularintegralsalongcurvesonamodulationspaces AT xiaoyu stronglysingularintegralsalongcurvesonamodulationspaces |