Strongly singular integrals along curves on α-modulation spaces

Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \...

Full description

Bibliographic Details
Main Authors: Xiaomei Wu, Xiao Yu
Format: Article
Language:English
Published: SpringerOpen 2017-08-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1458-0
_version_ 1819207355530739712
author Xiaomei Wu
Xiao Yu
author_facet Xiaomei Wu
Xiao Yu
author_sort Xiaomei Wu
collection DOAJ
description Abstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \vert ^{\gamma}}\,dt $$ along homogeneous curves Γ θ ( t ) $\Gamma_{\theta}(t)$ . We prove that T n , β , γ $T_{n, \beta, \gamma}$ is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces.
first_indexed 2024-12-23T05:22:11Z
format Article
id doaj.art-47defc99b5da4e9cb3fe2d50220328e1
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-23T05:22:11Z
publishDate 2017-08-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-47defc99b5da4e9cb3fe2d50220328e12022-12-21T17:58:40ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-08-012017111310.1186/s13660-017-1458-0Strongly singular integrals along curves on α-modulation spacesXiaomei Wu0Xiao Yu1Xingzhi College, Zhejiang Normal UniversityDepartment of Mathematics, Shangrao Normal UniversityAbstract In this paper, we study the strongly singular integrals T n , β , γ f ( x ) = p . v . ∫ − 1 1 f ( x − Γ θ ( t ) ) e − 2 π i | t | − β t | t | γ d t $$T_{n, \beta, \gamma}f(x)=\mathrm{p.v.} \int_{-1}^{1}f\bigl(x-\Gamma_{\theta}(t) \bigr)\frac {e^{-2\pi i \vert t \vert ^{-\beta}}}{t \vert t \vert ^{\gamma}}\,dt $$ along homogeneous curves Γ θ ( t ) $\Gamma_{\theta}(t)$ . We prove that T n , β , γ $T_{n, \beta, \gamma}$ is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces.http://link.springer.com/article/10.1186/s13660-017-1458-0α-modulation spacesstrongly singular integralsBesov spaceshomogeneous curves
spellingShingle Xiaomei Wu
Xiao Yu
Strongly singular integrals along curves on α-modulation spaces
Journal of Inequalities and Applications
α-modulation spaces
strongly singular integrals
Besov spaces
homogeneous curves
title Strongly singular integrals along curves on α-modulation spaces
title_full Strongly singular integrals along curves on α-modulation spaces
title_fullStr Strongly singular integrals along curves on α-modulation spaces
title_full_unstemmed Strongly singular integrals along curves on α-modulation spaces
title_short Strongly singular integrals along curves on α-modulation spaces
title_sort strongly singular integrals along curves on α modulation spaces
topic α-modulation spaces
strongly singular integrals
Besov spaces
homogeneous curves
url http://link.springer.com/article/10.1186/s13660-017-1458-0
work_keys_str_mv AT xiaomeiwu stronglysingularintegralsalongcurvesonamodulationspaces
AT xiaoyu stronglysingularintegralsalongcurvesonamodulationspaces