A case study on new high-strength temporary support technology of extremely soft coal seam roadway

Abstract One of the main challenges in excavating roadways is implementing temporary supports that are powered by hydraulics and have high strength. The current temporary support system lacks active support and often causes separation between the top plate and the layer below. It is crucial to contr...

Full description

Bibliographic Details
Main Authors: Zhijun Xu, Chong Li, Yue Cao, Lianhai Tai, Jun Han
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-48583-7
_version_ 1797398005355118592
author Zhijun Xu
Chong Li
Yue Cao
Lianhai Tai
Jun Han
author_facet Zhijun Xu
Chong Li
Yue Cao
Lianhai Tai
Jun Han
author_sort Zhijun Xu
collection DOAJ
description Abstract One of the main challenges in excavating roadways is implementing temporary supports that are powered by hydraulics and have high strength. The current temporary support system lacks active support and often causes separation between the top plate and the layer below. It is crucial to control the initial separation of the roadway roof for the stability of the surrounding rock, especially on roadways with loose and soft rock. This research focuses on the A4027 return airway in Sail Six Mine. The issues with the temporary support system in this airway have been identified. The concept and principle of using hydraulically driven, high-strength temporary support technology are proposed. A mechanical analysis model is created to study the stacked roof in the temporary support region, and the critical conditions for delamination of the top plate are determined. The relationship between the delamination difficulty parameter Q, the distance between temporary supports L, and the strength of the temporary supports q is quantified. Numerical simulation using Flac3d is used to model the relationship between the strength of the temporary supports and the deformation and stress of the rock on the roof. The overall strength of the temporary supports for the A4027 return airway is determined to be 10 kN/m2, with a distance of 2 m between the temporary supports. Hydraulically driven, high-strength temporary support devices are developed and tested for their strength. Field trials are conducted as well. The results show that the initial separation of the top plate is improved and that the support effect in the temporary support region is significant. The maximum separation of the top plate during excavation is only 34 mm, and the sinking of the top plate does not exceed 68 mm. This effectively limits the deformation of the surrounding rocks in the very soft coal seam, providing valuable insights for other roadways with similar conditions.
first_indexed 2024-03-09T01:19:25Z
format Article
id doaj.art-47eef8694e694622bd6aa8a8ffa98894
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-09T01:19:25Z
publishDate 2023-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-47eef8694e694622bd6aa8a8ffa988942023-12-10T12:16:13ZengNature PortfolioScientific Reports2045-23222023-12-0113112410.1038/s41598-023-48583-7A case study on new high-strength temporary support technology of extremely soft coal seam roadwayZhijun Xu0Chong Li1Yue Cao2Lianhai Tai3Jun Han4School of Mining Engineering, China University of Mining and TechnologySchool of Mining Engineering, China University of Mining and TechnologySchool of Mining Engineering, China University of Mining and TechnologySchool of Mining Engineering, China University of Mining and TechnologyChangzhou BYD Auto Co.Abstract One of the main challenges in excavating roadways is implementing temporary supports that are powered by hydraulics and have high strength. The current temporary support system lacks active support and often causes separation between the top plate and the layer below. It is crucial to control the initial separation of the roadway roof for the stability of the surrounding rock, especially on roadways with loose and soft rock. This research focuses on the A4027 return airway in Sail Six Mine. The issues with the temporary support system in this airway have been identified. The concept and principle of using hydraulically driven, high-strength temporary support technology are proposed. A mechanical analysis model is created to study the stacked roof in the temporary support region, and the critical conditions for delamination of the top plate are determined. The relationship between the delamination difficulty parameter Q, the distance between temporary supports L, and the strength of the temporary supports q is quantified. Numerical simulation using Flac3d is used to model the relationship between the strength of the temporary supports and the deformation and stress of the rock on the roof. The overall strength of the temporary supports for the A4027 return airway is determined to be 10 kN/m2, with a distance of 2 m between the temporary supports. Hydraulically driven, high-strength temporary support devices are developed and tested for their strength. Field trials are conducted as well. The results show that the initial separation of the top plate is improved and that the support effect in the temporary support region is significant. The maximum separation of the top plate during excavation is only 34 mm, and the sinking of the top plate does not exceed 68 mm. This effectively limits the deformation of the surrounding rocks in the very soft coal seam, providing valuable insights for other roadways with similar conditions.https://doi.org/10.1038/s41598-023-48583-7
spellingShingle Zhijun Xu
Chong Li
Yue Cao
Lianhai Tai
Jun Han
A case study on new high-strength temporary support technology of extremely soft coal seam roadway
Scientific Reports
title A case study on new high-strength temporary support technology of extremely soft coal seam roadway
title_full A case study on new high-strength temporary support technology of extremely soft coal seam roadway
title_fullStr A case study on new high-strength temporary support technology of extremely soft coal seam roadway
title_full_unstemmed A case study on new high-strength temporary support technology of extremely soft coal seam roadway
title_short A case study on new high-strength temporary support technology of extremely soft coal seam roadway
title_sort case study on new high strength temporary support technology of extremely soft coal seam roadway
url https://doi.org/10.1038/s41598-023-48583-7
work_keys_str_mv AT zhijunxu acasestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT chongli acasestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT yuecao acasestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT lianhaitai acasestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT junhan acasestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT zhijunxu casestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT chongli casestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT yuecao casestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT lianhaitai casestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway
AT junhan casestudyonnewhighstrengthtemporarysupporttechnologyofextremelysoftcoalseamroadway