Bell Numbers of Complete Multipartite Graphs
The {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vladimir Andrunachievici Institute of Mathematics and Computer Science
2016-08-01
|
Series: | Computer Science Journal of Moldova |
Subjects: | |
Online Access: | http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdf |
_version_ | 1828136358095355904 |
---|---|
author | Julian Allagan Christopher Serkan |
author_facet | Julian Allagan Christopher Serkan |
author_sort | Julian Allagan |
collection | DOAJ |
description | The {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds of these parameters for any graph. |
first_indexed | 2024-04-11T18:02:56Z |
format | Article |
id | doaj.art-47f3180f809e400ebf36d2a6f73cbeb6 |
institution | Directory Open Access Journal |
issn | 1561-4042 |
language | English |
last_indexed | 2024-04-11T18:02:56Z |
publishDate | 2016-08-01 |
publisher | Vladimir Andrunachievici Institute of Mathematics and Computer Science |
record_format | Article |
series | Computer Science Journal of Moldova |
spelling | doaj.art-47f3180f809e400ebf36d2a6f73cbeb62022-12-22T04:10:25ZengVladimir Andrunachievici Institute of Mathematics and Computer ScienceComputer Science Journal of Moldova1561-40422016-08-01242(71)234242Bell Numbers of Complete Multipartite GraphsJulian Allagan0Christopher Serkan1University of North Georgia, Watkinsville, Georgia, U.S.AUniversity of North Georgia, Watkinsville, Georgia, U.S.AThe {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds of these parameters for any graph.http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdfBell numberBell polynomialPartitionStirling numbers |
spellingShingle | Julian Allagan Christopher Serkan Bell Numbers of Complete Multipartite Graphs Computer Science Journal of Moldova Bell number Bell polynomial Partition Stirling numbers |
title | Bell Numbers of Complete Multipartite Graphs |
title_full | Bell Numbers of Complete Multipartite Graphs |
title_fullStr | Bell Numbers of Complete Multipartite Graphs |
title_full_unstemmed | Bell Numbers of Complete Multipartite Graphs |
title_short | Bell Numbers of Complete Multipartite Graphs |
title_sort | bell numbers of complete multipartite graphs |
topic | Bell number Bell polynomial Partition Stirling numbers |
url | http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdf |
work_keys_str_mv | AT julianallagan bellnumbersofcompletemultipartitegraphs AT christopherserkan bellnumbersofcompletemultipartitegraphs |