Bell Numbers of Complete Multipartite Graphs

The {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds...

Full description

Bibliographic Details
Main Authors: Julian Allagan, Christopher Serkan
Format: Article
Language:English
Published: Vladimir Andrunachievici Institute of Mathematics and Computer Science 2016-08-01
Series:Computer Science Journal of Moldova
Subjects:
Online Access:http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdf
_version_ 1828136358095355904
author Julian Allagan
Christopher Serkan
author_facet Julian Allagan
Christopher Serkan
author_sort Julian Allagan
collection DOAJ
description The {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds of these parameters for any graph.
first_indexed 2024-04-11T18:02:56Z
format Article
id doaj.art-47f3180f809e400ebf36d2a6f73cbeb6
institution Directory Open Access Journal
issn 1561-4042
language English
last_indexed 2024-04-11T18:02:56Z
publishDate 2016-08-01
publisher Vladimir Andrunachievici Institute of Mathematics and Computer Science
record_format Article
series Computer Science Journal of Moldova
spelling doaj.art-47f3180f809e400ebf36d2a6f73cbeb62022-12-22T04:10:25ZengVladimir Andrunachievici Institute of Mathematics and Computer ScienceComputer Science Journal of Moldova1561-40422016-08-01242(71)234242Bell Numbers of Complete Multipartite GraphsJulian Allagan0Christopher Serkan1University of North Georgia, Watkinsville, Georgia, U.S.AUniversity of North Georgia, Watkinsville, Georgia, U.S.AThe {\it Stirling number} $S(G;k)$ is the number of partitions of the vertices of a graph $G$ into $k$ nonempty independent sets and the number of all partitions of $G$ is its {\it Bell number}, $B(G)$. We find $S(G;k)$ and $B(G)$ when $G$ is any complete multipartite graph, giving the upper bounds of these parameters for any graph.http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdfBell numberBell polynomialPartitionStirling numbers
spellingShingle Julian Allagan
Christopher Serkan
Bell Numbers of Complete Multipartite Graphs
Computer Science Journal of Moldova
Bell number
Bell polynomial
Partition
Stirling numbers
title Bell Numbers of Complete Multipartite Graphs
title_full Bell Numbers of Complete Multipartite Graphs
title_fullStr Bell Numbers of Complete Multipartite Graphs
title_full_unstemmed Bell Numbers of Complete Multipartite Graphs
title_short Bell Numbers of Complete Multipartite Graphs
title_sort bell numbers of complete multipartite graphs
topic Bell number
Bell polynomial
Partition
Stirling numbers
url http://www.math.md/files/csjm/v24-n2/v24-n2-(pp234-242).pdf
work_keys_str_mv AT julianallagan bellnumbersofcompletemultipartitegraphs
AT christopherserkan bellnumbersofcompletemultipartitegraphs