The Case for Shifting the Renyi Entropy

We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quan...

Full description

Bibliographic Details
Main Authors: Francisco J. Valverde-Albacete, Carmen Peláez-Moreno
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/21/1/46
_version_ 1828348602447036416
author Francisco J. Valverde-Albacete
Carmen Peláez-Moreno
author_facet Francisco J. Valverde-Albacete
Carmen Peláez-Moreno
author_sort Francisco J. Valverde-Albacete
collection DOAJ
description We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications.
first_indexed 2024-04-14T00:57:09Z
format Article
id doaj.art-48084133493c4faaa5411c25dde88731
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-14T00:57:09Z
publishDate 2019-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-48084133493c4faaa5411c25dde887312022-12-22T02:21:34ZengMDPI AGEntropy1099-43002019-01-012114610.3390/e21010046e21010046The Case for Shifting the Renyi EntropyFrancisco J. Valverde-Albacete0Carmen Peláez-Moreno1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, SpainDepartment of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, SpainWe introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications.http://www.mdpi.com/1099-4300/21/1/46shifted Rényi entropyShannon-type relationsgeneralized weighted meansHölder meansescort distributions
spellingShingle Francisco J. Valverde-Albacete
Carmen Peláez-Moreno
The Case for Shifting the Renyi Entropy
Entropy
shifted Rényi entropy
Shannon-type relations
generalized weighted means
Hölder means
escort distributions
title The Case for Shifting the Renyi Entropy
title_full The Case for Shifting the Renyi Entropy
title_fullStr The Case for Shifting the Renyi Entropy
title_full_unstemmed The Case for Shifting the Renyi Entropy
title_short The Case for Shifting the Renyi Entropy
title_sort case for shifting the renyi entropy
topic shifted Rényi entropy
Shannon-type relations
generalized weighted means
Hölder means
escort distributions
url http://www.mdpi.com/1099-4300/21/1/46
work_keys_str_mv AT franciscojvalverdealbacete thecaseforshiftingtherenyientropy
AT carmenpelaezmoreno thecaseforshiftingtherenyientropy
AT franciscojvalverdealbacete caseforshiftingtherenyientropy
AT carmenpelaezmoreno caseforshiftingtherenyientropy