Experimental and computational investigation on the charge storage performance of a novel Al2O3-reduced graphene oxide hybrid electrode

Abstract The advancements in electrochemical capacitors have noticed a remarkable enhancement in the performance for smart electronic device applications, which has led to the invention of novel and low-cost electroactive materials. Herein, we synthesized nanostructured Al2O3 and Al2O3-reduced graph...

Full description

Bibliographic Details
Main Authors: Satyajit Ratha, Surjit Sahoo, Pratap Mane, Balaram Polai, Bijoy Sathpathy, Brahmananda Chakraborty, Saroj Kumar Nayak
Format: Article
Language:English
Published: Nature Portfolio 2023-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-23574-2
Description
Summary:Abstract The advancements in electrochemical capacitors have noticed a remarkable enhancement in the performance for smart electronic device applications, which has led to the invention of novel and low-cost electroactive materials. Herein, we synthesized nanostructured Al2O3 and Al2O3-reduced graphene oxide (Al2O3-rGO) hybrid through hydrothermal and post-hydrothermal calcination processes. The synthesized materials were subject to standard characterisation processes to verify their morphological and structural details. The electrochemical performances of nanostructured Al2O3 and Al2O3- rGO hybrid were evaluated through computational and experimental analyses. Due to the superior electrical conductivity of reduced graphene oxide and the synergistic effect of both EDLC and pseudocapacitive behaviour, the Al2O3- rGO hybrid shows much improved electrochemical performance (~ 15-fold) as compared to bare Al2O3. Further, a symmetric supercapacitor device (SSD) was designed using the Al2O3- rGO hybrid electrodes, and detailed electrochemical performance was evaluated. The fabricated Al2O3- rGO hybrid-based SSD showed 98.56% capacity retention when subjected to ~ 10,000 charge–discharge cycles. Both the systems (Al2O3 and its rGO hybrid) have been analysed extensively with the help of Density Functional Theory simulation technique to provide detailed structural and electronic properties. With the introduction of reduced graphene oxide, the available electronic states near the Fermi level are greatly enhanced, imparting a significant increment in the conductivity of the hybrid system. The lower diffusion energy barrier for electrolyte ions and higher quantum capacitance for the hybrid structure compared to pristine Al2O3 justify improvement in charge storage performance for the hybrid structure, supporting our experimental findings.
ISSN:2045-2322