Oscillation of second-order forced nonlinear dynamic equations on time scales

In this paper, we discuss the oscillatory behavior of the second-order forced nonlinear dynamic equation \begin{equation*} \left( a(t)x^{\Delta }(t)\right) ^{\Delta }+p(t)f(x^{\sigma })=r(t), \end{equation*} on a time scale ${\mathbb{T}}$ when $a(t)>0$. We establish some sufficient conditions wh...

Full description

Bibliographic Details
Main Author: Samir Saker
Format: Article
Language:English
Published: University of Szeged 2005-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=231
_version_ 1797830772756840448
author Samir Saker
author_facet Samir Saker
author_sort Samir Saker
collection DOAJ
description In this paper, we discuss the oscillatory behavior of the second-order forced nonlinear dynamic equation \begin{equation*} \left( a(t)x^{\Delta }(t)\right) ^{\Delta }+p(t)f(x^{\sigma })=r(t), \end{equation*} on a time scale ${\mathbb{T}}$ when $a(t)>0$. We establish some sufficient conditions which ensure that every solution oscillates or satisfies $\lim \inf_{t\rightarrow \infty }\left\vert x(t)\right\vert =0.$ Our oscillation results when $r(t)=0$ improve the oscillation results for dynamic equations on time scales that has been established by Erbe and Peterson [Proc. Amer. Math. Soc \ 132 (2004), 735-744], Bohner, Erbe and Peterson [J. Math. Anal. Appl. 301 (2005), 491--507] since our results do not require $\int_{t_{0}}^{\infty }q(t)\Delta t>0$ and $\int_{\pm t_{0}}^{\pm \infty } \frac{du}{f(u)}<\infty .$ Also, as a special case when ${\mathbb{T=R}}$, and $r(t)=0$ our results improve some oscillation results for differential equations. Some examples are given to illustrate the main results.
first_indexed 2024-04-09T13:41:28Z
format Article
id doaj.art-480af5673bb9457da87885b1f5a8d033
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:28Z
publishDate 2005-11-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-480af5673bb9457da87885b1f5a8d0332023-05-09T07:52:57ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752005-11-0120052311710.14232/ejqtde.2005.1.23231Oscillation of second-order forced nonlinear dynamic equations on time scalesSamir Saker0Mansoura University, Mansoura, EgyptIn this paper, we discuss the oscillatory behavior of the second-order forced nonlinear dynamic equation \begin{equation*} \left( a(t)x^{\Delta }(t)\right) ^{\Delta }+p(t)f(x^{\sigma })=r(t), \end{equation*} on a time scale ${\mathbb{T}}$ when $a(t)>0$. We establish some sufficient conditions which ensure that every solution oscillates or satisfies $\lim \inf_{t\rightarrow \infty }\left\vert x(t)\right\vert =0.$ Our oscillation results when $r(t)=0$ improve the oscillation results for dynamic equations on time scales that has been established by Erbe and Peterson [Proc. Amer. Math. Soc \ 132 (2004), 735-744], Bohner, Erbe and Peterson [J. Math. Anal. Appl. 301 (2005), 491--507] since our results do not require $\int_{t_{0}}^{\infty }q(t)\Delta t>0$ and $\int_{\pm t_{0}}^{\pm \infty } \frac{du}{f(u)}<\infty .$ Also, as a special case when ${\mathbb{T=R}}$, and $r(t)=0$ our results improve some oscillation results for differential equations. Some examples are given to illustrate the main results.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=231
spellingShingle Samir Saker
Oscillation of second-order forced nonlinear dynamic equations on time scales
Electronic Journal of Qualitative Theory of Differential Equations
title Oscillation of second-order forced nonlinear dynamic equations on time scales
title_full Oscillation of second-order forced nonlinear dynamic equations on time scales
title_fullStr Oscillation of second-order forced nonlinear dynamic equations on time scales
title_full_unstemmed Oscillation of second-order forced nonlinear dynamic equations on time scales
title_short Oscillation of second-order forced nonlinear dynamic equations on time scales
title_sort oscillation of second order forced nonlinear dynamic equations on time scales
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=231
work_keys_str_mv AT samirsaker oscillationofsecondorderforcednonlineardynamicequationsontimescales