Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems
One of the keys to science and environmental literacy is systems thinking. Learning how to think about the interactions between systems, the far-reaching effects of a system, and the dynamic nature of systems are all critical outcomes of science learning. However, students need support to develop sy...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/12/4/1040 |
_version_ | 1797571252036042752 |
---|---|
author | Diane Lally Cory T. Forbes |
author_facet | Diane Lally Cory T. Forbes |
author_sort | Diane Lally |
collection | DOAJ |
description | One of the keys to science and environmental literacy is systems thinking. Learning how to think about the interactions between systems, the far-reaching effects of a system, and the dynamic nature of systems are all critical outcomes of science learning. However, students need support to develop systems thinking skills in undergraduate geoscience classrooms. While systems thinking-focused instruction has the potential to benefit student learning, gaps exist in our understanding of students’ use of systems thinking to operationalize and model SHS, as well as their metacognitive evaluation of systems thinking. To address this need, we have designed, implemented, refined, and studied an introductory-level, interdisciplinary course focused on coupled human-water, or sociohydrologic, systems. Data for this study comes from three consecutive iterations of the course and involves student models and explanations for a socio-hydrologic issue (<i>n</i> = 163). To analyze this data, we counted themed features of the drawn models and applied an operationalization rubric to the written responses. Analyses of the written explanations reveal statistically-significant differences between underlying categories of systems thinking (<i>F</i>(5, 768) = 401.6, <i>p</i> < 0.05). Students were best able to operationalize their systems thinking about problem identification (<i>M</i> = 2.22, <i>SD</i> = 0.73) as compared to unintended consequences (<i>M</i> = 1.43, <i>SD</i> = 1.11). Student-generated systems thinking models revealed statistically significant differences between system components, patterns, and mechanisms, <i>F</i>(2, 132) = 3.06, <i>p</i> < 0.05. Students focused most strongly on system components (<i>M</i> = 13.54, <i>SD</i> = 7.15) as compared to related processes or mechanisms. Qualitative data demonstrated three types of model limitation including scope/scale, temporal, and specific components/mechanisms/patterns excluded. These findings have implications for supporting systems thinking in undergraduate geoscience classrooms, as well as insight into links between these two skills. |
first_indexed | 2024-03-10T20:37:40Z |
format | Article |
id | doaj.art-480dd52054734aa4a2fff4670f151a5d |
institution | Directory Open Access Journal |
issn | 2073-4441 |
language | English |
last_indexed | 2024-03-10T20:37:40Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Water |
spelling | doaj.art-480dd52054734aa4a2fff4670f151a5d2023-11-19T20:54:33ZengMDPI AGWater2073-44412020-04-01124104010.3390/w12041040Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water SystemsDiane Lally0Cory T. Forbes1School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USASchool of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USAOne of the keys to science and environmental literacy is systems thinking. Learning how to think about the interactions between systems, the far-reaching effects of a system, and the dynamic nature of systems are all critical outcomes of science learning. However, students need support to develop systems thinking skills in undergraduate geoscience classrooms. While systems thinking-focused instruction has the potential to benefit student learning, gaps exist in our understanding of students’ use of systems thinking to operationalize and model SHS, as well as their metacognitive evaluation of systems thinking. To address this need, we have designed, implemented, refined, and studied an introductory-level, interdisciplinary course focused on coupled human-water, or sociohydrologic, systems. Data for this study comes from three consecutive iterations of the course and involves student models and explanations for a socio-hydrologic issue (<i>n</i> = 163). To analyze this data, we counted themed features of the drawn models and applied an operationalization rubric to the written responses. Analyses of the written explanations reveal statistically-significant differences between underlying categories of systems thinking (<i>F</i>(5, 768) = 401.6, <i>p</i> < 0.05). Students were best able to operationalize their systems thinking about problem identification (<i>M</i> = 2.22, <i>SD</i> = 0.73) as compared to unintended consequences (<i>M</i> = 1.43, <i>SD</i> = 1.11). Student-generated systems thinking models revealed statistically significant differences between system components, patterns, and mechanisms, <i>F</i>(2, 132) = 3.06, <i>p</i> < 0.05. Students focused most strongly on system components (<i>M</i> = 13.54, <i>SD</i> = 7.15) as compared to related processes or mechanisms. Qualitative data demonstrated three types of model limitation including scope/scale, temporal, and specific components/mechanisms/patterns excluded. These findings have implications for supporting systems thinking in undergraduate geoscience classrooms, as well as insight into links between these two skills.https://www.mdpi.com/2073-4441/12/4/1040undergraduatesystems thinkingwatergeoscience |
spellingShingle | Diane Lally Cory T. Forbes Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems Water undergraduate systems thinking water geoscience |
title | Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems |
title_full | Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems |
title_fullStr | Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems |
title_full_unstemmed | Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems |
title_short | Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems |
title_sort | sociohydrologic systems thinking an analysis of undergraduate students operationalization and modeling of coupled human water systems |
topic | undergraduate systems thinking water geoscience |
url | https://www.mdpi.com/2073-4441/12/4/1040 |
work_keys_str_mv | AT dianelally sociohydrologicsystemsthinkingananalysisofundergraduatestudentsoperationalizationandmodelingofcoupledhumanwatersystems AT corytforbes sociohydrologicsystemsthinkingananalysisofundergraduatestudentsoperationalizationandmodelingofcoupledhumanwatersystems |