Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition

Consider the linear eigenvalue problem of fourth-order$$y^{(4)}(x)-(q(x)y'(x))'=\lambda y(x),\ \ \ 0&lt;x&lt;l,$$$$y(0)=y'(0)=0,$$$$(a_0+a_1\lambda+a_2\lambda^2)y'(l)+(b_0+b_1\lambda+b_2\lambda^2)y''(l)=0,$$$$y(l)\cos\delta-Ty(l)\sin\delta=0,$$where <em>λ&...

Full description

Bibliographic Details
Main Authors: Chenghua Gao, Maojun Ran
Format: Article
Language:English
Published: AIMS Press 2020-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020062/fulltext.html
Description
Summary:Consider the linear eigenvalue problem of fourth-order$$y^{(4)}(x)-(q(x)y'(x))'=\lambda y(x),\ \ \ 0&lt;x&lt;l,$$$$y(0)=y'(0)=0,$$$$(a_0+a_1\lambda+a_2\lambda^2)y'(l)+(b_0+b_1\lambda+b_2\lambda^2)y''(l)=0,$$$$y(l)\cos\delta-Ty(l)\sin\delta=0,$$where <em>λ</em> is a spectal parameter, $\delta\in[\frac{\pi}{2},\pi]$, <em>Ty</em> = <em>y</em>''' - <em>qy</em>', <em>q</em>(<em>x</em>) is a positive absolutely continuous function on the interval [0,<em>l</em>], <em>δ</em>, <em>a</em><sub><em>i</em></sub> and <em>b</em><sub><em>i</em></sub> (<em>i</em>=0,1,2) are real constants. We obtain not only the existence, simplicity and interlacing properties of the eigenvalues, the oscillation properties of the eigenfunctions, but also the asymptotic formula of the eigenvalues and the corresponding eigenfunctions for sufficiently large <em>n</em>. Moreover, a new inner Hilbert space and a new sufficient conditions will be given to discuss the basis properties of the system of the eigenfunctions in <em>L</em><sub><em>p</em></sub>(0,<em>l</em>).
ISSN:2473-6988