An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields

This article proposes a flexible hardware accelerator optimized from a throughput and area point of view for the computationally intensive part of elliptic curve cryptography. The target binary fields, defined by the National Institute of Standards and Technology, are <inline-formula><math...

Full description

Bibliographic Details
Main Authors: Amer Aljaedi, Muhammad Rashid, Sajjad Shaukat Jamal, Adel R. Alharbi, Mohammed Alotaibi
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/19/10882
_version_ 1827722763050156032
author Amer Aljaedi
Muhammad Rashid
Sajjad Shaukat Jamal
Adel R. Alharbi
Mohammed Alotaibi
author_facet Amer Aljaedi
Muhammad Rashid
Sajjad Shaukat Jamal
Adel R. Alharbi
Mohammed Alotaibi
author_sort Amer Aljaedi
collection DOAJ
description This article proposes a flexible hardware accelerator optimized from a throughput and area point of view for the computationally intensive part of elliptic curve cryptography. The target binary fields, defined by the National Institute of Standards and Technology, are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>233</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>283</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>409</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>571</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>. For the optimization of throughput, the proposed accelerator employs a digit-parallel multiplier. The size of the digit is 41 bits. The proposed accelerator has reused the multiplication and squaring circuit for area optimization to compute modular inversions. Flexibility is included using three additional buffers on top of the proposed accelerator architecture to load different input parameters. Finally, a dedicated controller is used to optimize control signal handling. The architecture is modeled using Verilog and implemented up to the post-place-and-route level on a Xilinx Virtex-7 field-programmable gate array. The area utilization of our accelerator in slices is 1479, 1998, 2573, 3271, and 4469 for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>163</mn></mrow></semantics></math></inline-formula> to 571. The time needed to perform one-point multiplication is 7.15, 10.60, 13.26, 20.96, and 30.42 μs. Similarly, the throughput over area figures for the same key lengths are 94.56, 47.21, 29.30, 14.58, and 7.35. Consequently, achieved results and a comprehensive performance comparison show the suitability of the proposed design for constrained environments that demand throughput/area-efficient implementations.
first_indexed 2024-03-10T21:48:29Z
format Article
id doaj.art-481e450eb9b949aba7e90c0d50e2d6d4
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T21:48:29Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-481e450eb9b949aba7e90c0d50e2d6d42023-11-19T14:05:27ZengMDPI AGApplied Sciences2076-34172023-09-0113191088210.3390/app131910882An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary FieldsAmer Aljaedi0Muhammad Rashid1Sajjad Shaukat Jamal2Adel R. Alharbi3Mohammed Alotaibi4College of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi ArabiaComputer Engineering Department, Umm Al Qura University, Makkah 21955, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaCollege of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Management Information Systems, College of Business Administration, University of Tabuk, Tabuk 71491, Saudi ArabiaThis article proposes a flexible hardware accelerator optimized from a throughput and area point of view for the computationally intensive part of elliptic curve cryptography. The target binary fields, defined by the National Institute of Standards and Technology, are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>233</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>283</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>409</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>571</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>. For the optimization of throughput, the proposed accelerator employs a digit-parallel multiplier. The size of the digit is 41 bits. The proposed accelerator has reused the multiplication and squaring circuit for area optimization to compute modular inversions. Flexibility is included using three additional buffers on top of the proposed accelerator architecture to load different input parameters. Finally, a dedicated controller is used to optimize control signal handling. The architecture is modeled using Verilog and implemented up to the post-place-and-route level on a Xilinx Virtex-7 field-programmable gate array. The area utilization of our accelerator in slices is 1479, 1998, 2573, 3271, and 4469 for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>163</mn></mrow></semantics></math></inline-formula> to 571. The time needed to perform one-point multiplication is 7.15, 10.60, 13.26, 20.96, and 30.42 μs. Similarly, the throughput over area figures for the same key lengths are 94.56, 47.21, 29.30, 14.58, and 7.35. Consequently, achieved results and a comprehensive performance comparison show the suitability of the proposed design for constrained environments that demand throughput/area-efficient implementations.https://www.mdpi.com/2076-3417/13/19/10882hardwareacceleratorelliptic curve cryptographypoint multiplicationFPGA
spellingShingle Amer Aljaedi
Muhammad Rashid
Sajjad Shaukat Jamal
Adel R. Alharbi
Mohammed Alotaibi
An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
Applied Sciences
hardware
accelerator
elliptic curve cryptography
point multiplication
FPGA
title An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
title_full An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
title_fullStr An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
title_full_unstemmed An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
title_short An Optimized Flexible Accelerator for Elliptic Curve Point Multiplication over NIST Binary Fields
title_sort optimized flexible accelerator for elliptic curve point multiplication over nist binary fields
topic hardware
accelerator
elliptic curve cryptography
point multiplication
FPGA
url https://www.mdpi.com/2076-3417/13/19/10882
work_keys_str_mv AT ameraljaedi anoptimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT muhammadrashid anoptimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT sajjadshaukatjamal anoptimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT adelralharbi anoptimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT mohammedalotaibi anoptimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT ameraljaedi optimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT muhammadrashid optimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT sajjadshaukatjamal optimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT adelralharbi optimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields
AT mohammedalotaibi optimizedflexibleacceleratorforellipticcurvepointmultiplicationovernistbinaryfields