Dynamics of a Fractional Order Eco-Epidemiological Model

In this paper, we propose a fractional order eco-epidemiological model. We considere the existence of time memory in the growth rate of the three populations. We observed the dynamical behaviour by analysing with fractional order and then simulateing using Grünwald-Letnikov approximation to support...

Full description

Bibliographic Details
Main Authors: Kartika Nugraheni, Trisilowati Trisilowati, Agus Suryanto
Format: Article
Language:English
Published: University of Brawijaya 2017-09-01
Series:Journal of Tropical Life Science
Subjects:
Online Access:http://jtrolis.ub.ac.id/index.php/jtrolis/article/view/783
_version_ 1797669165994082304
author Kartika Nugraheni
Trisilowati Trisilowati
Agus Suryanto
author_facet Kartika Nugraheni
Trisilowati Trisilowati
Agus Suryanto
author_sort Kartika Nugraheni
collection DOAJ
description In this paper, we propose a fractional order eco-epidemiological model. We considere the existence of time memory in the growth rate of the three populations. We observed the dynamical behaviour by analysing with fractional order and then simulateing using Grünwald-Letnikov approximation to support analytical results. It found that the model has five equilibrium points, namely the origin, the survival of susceptible prey, the predator free equilibria, the infected prey free equilibria, the interior equilibria. Numerical simulations show that the existence of fractional order  is a factor which affects the behaviour of solutions.
first_indexed 2024-03-11T20:40:11Z
format Article
id doaj.art-4821b509a9fd407fa91710becb3f5ffe
institution Directory Open Access Journal
issn 2087-5517
2527-4376
language English
last_indexed 2024-03-11T20:40:11Z
publishDate 2017-09-01
publisher University of Brawijaya
record_format Article
series Journal of Tropical Life Science
spelling doaj.art-4821b509a9fd407fa91710becb3f5ffe2023-10-02T02:49:40ZengUniversity of BrawijayaJournal of Tropical Life Science2087-55172527-43762017-09-017324325010.11594/jtls.07.03.09230Dynamics of a Fractional Order Eco-Epidemiological ModelKartika Nugraheni0Trisilowati Trisilowati1Agus Suryanto2Department of Mathematics, Brawijaya UniversityDepartment of Mathematics, Brawijaya UniversityDepartment of Mathematics, Brawijaya UniversityIn this paper, we propose a fractional order eco-epidemiological model. We considere the existence of time memory in the growth rate of the three populations. We observed the dynamical behaviour by analysing with fractional order and then simulateing using Grünwald-Letnikov approximation to support analytical results. It found that the model has five equilibrium points, namely the origin, the survival of susceptible prey, the predator free equilibria, the infected prey free equilibria, the interior equilibria. Numerical simulations show that the existence of fractional order  is a factor which affects the behaviour of solutions.http://jtrolis.ub.ac.id/index.php/jtrolis/article/view/783Fractional order, eco-epidemiological model, Grünwald-Letnikov, behaviour solutions
spellingShingle Kartika Nugraheni
Trisilowati Trisilowati
Agus Suryanto
Dynamics of a Fractional Order Eco-Epidemiological Model
Journal of Tropical Life Science
Fractional order, eco-epidemiological model, Grünwald-Letnikov, behaviour solutions
title Dynamics of a Fractional Order Eco-Epidemiological Model
title_full Dynamics of a Fractional Order Eco-Epidemiological Model
title_fullStr Dynamics of a Fractional Order Eco-Epidemiological Model
title_full_unstemmed Dynamics of a Fractional Order Eco-Epidemiological Model
title_short Dynamics of a Fractional Order Eco-Epidemiological Model
title_sort dynamics of a fractional order eco epidemiological model
topic Fractional order, eco-epidemiological model, Grünwald-Letnikov, behaviour solutions
url http://jtrolis.ub.ac.id/index.php/jtrolis/article/view/783
work_keys_str_mv AT kartikanugraheni dynamicsofafractionalorderecoepidemiologicalmodel
AT trisilowatitrisilowati dynamicsofafractionalorderecoepidemiologicalmodel
AT agussuryanto dynamicsofafractionalorderecoepidemiologicalmodel