Summary: | Abstract Industrial waste steam is one of the major sources of global energy losses. Therefore, the collection and conversion of waste steam energy into electricity have aroused great interest. Here, a “two‐in‐one” strategy is reported that combines thermoelectric and moist‐electric generation mechanisms for a highly efficient flexible moist‐thermoelectric generator (MTEG). The spontaneous adsorption of water molecules and heat in the polyelectrolyte membrane induces the fast dissociation and diffusion of Na+ and H+, resulting in the high electricity generation. Thus, the assembled flexible MTEG generates power with a high open‐circuit voltage (Voc) of 1.81 V (effective area = 1cm2) and a power density of up to 4.75±0.4 µW cm−2. With efficient integration, a 12‐unit MTEG can produce a Voc of 15.97 V, which is superior to most known TEGs and MEGs. The integrated and flexible MTEGs reported herein provide new insights for harvesting energy from industrial waste steam.
|