Summary: | In this paper, we study the dynamics of a fractional-order epidemic model with general nonlinear incidence rate functionals and time-delay. We investigate the local and global stability of the steady-states. We deduce the basic reproductive threshold parameter, so that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the disease-free steady-state is locally and globally asymptotically stable. However, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, there exists a positive (endemic) steady-state which is locally and globally asymptotically stable. A Holling type III response function is considered in the numerical simulations to illustrate the effectiveness of the theoretical results.
|