Thermoelectric Generation with Impinging Nano-Jets

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (...

Full description

Bibliographic Details
Main Authors: Fatih Selimefendigil, Hakan F. Oztop, Mikhail A. Sheremet
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/2/492
Description
Summary:In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>, Re<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>, r<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and 4w<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location z<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>h</mi></msub></semantics></math></inline-formula> = 2.5w<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>s</mi></msub></semantics></math></inline-formula>. There is 18% enhancement in the conversion efficiency when distances at z<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>h</mi></msub></semantics></math></inline-formula> = w<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>s</mi></msub></semantics></math></inline-formula> and z<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>h</mi></msub></semantics></math></inline-formula> = 2.5w<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>s</mi></msub></semantics></math></inline-formula> are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.
ISSN:1996-1073