Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union

Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries, where Natural Gas is mostly imported from external producers, the increase in international Natural Gas prices is maki...

Full description

Bibliographic Details
Main Authors: David Borge-Diez, Enrique Rosales-Asensio, Emin Açıkkalp, Daniel Alonso-Martínez
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/1/538
Description
Summary:Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries, where Natural Gas is mostly imported from external producers, the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore, they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified, and in these cases, synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
ISSN:1996-1073