A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties

Up to date, model and parameter uncertainties are generally overlooked by majority of researchers in the field of battery diagnostics and prognostics. As a consequence, accuracy of the battery performance estimation is dominated by the model fidelity and may vary from cell-to-cell. This paper propos...

Full description

Bibliographic Details
Main Authors: Rong Jing, Zhimin Xi, Xiao Guang Yang, Ed Decker
Format: Article
Language:English
Published: The Prognostics and Health Management Society 2014-06-01
Series:International Journal of Prognostics and Health Management
Subjects:
Online Access:https://papers.phmsociety.org/index.php/ijphm/article/view/2210
_version_ 1818690211624779776
author Rong Jing
Zhimin Xi
Xiao Guang Yang
Ed Decker
author_facet Rong Jing
Zhimin Xi
Xiao Guang Yang
Ed Decker
author_sort Rong Jing
collection DOAJ
description Up to date, model and parameter uncertainties are generally overlooked by majority of researchers in the field of battery diagnostics and prognostics. As a consequence, accuracy of the battery performance estimation is dominated by the model fidelity and may vary from cell-to-cell. This paper proposes a systematic framework to quantify battery model and parameter uncertainties for more effective battery performance estimation. Such a framework is generally applicable for estimating various battery performances of interest (e.g. state of charge (SOC), capacity, and power capability). Case studies for battery SOC estimation are conducted to demonstrate the effectiveness of the proposed framework.
first_indexed 2024-12-17T12:22:24Z
format Article
id doaj.art-484ced8b7f8849939b423314e5f47313
institution Directory Open Access Journal
issn 2153-2648
2153-2648
language English
last_indexed 2024-12-17T12:22:24Z
publishDate 2014-06-01
publisher The Prognostics and Health Management Society
record_format Article
series International Journal of Prognostics and Health Management
spelling doaj.art-484ced8b7f8849939b423314e5f473132022-12-21T21:48:54ZengThe Prognostics and Health Management SocietyInternational Journal of Prognostics and Health Management2153-26482153-26482014-06-0152doi:10.36001/ijphm.2014.v5i2.2210A Systematic Framework for Battery Performance Estimation Considering Model and Parameter UncertaintiesRong Jing0Zhimin Xi1Xiao Guang Yang2Ed Decker3University of Michigan - Dearborn, Dearborn, MI, 48128, USAUniversity of Michigan - Dearborn, Dearborn, MI, 48128, USAFord Motor Company, Dearborn, MI, 48121, USAFord Motor Company, Dearborn, MI, 48121, USAUp to date, model and parameter uncertainties are generally overlooked by majority of researchers in the field of battery diagnostics and prognostics. As a consequence, accuracy of the battery performance estimation is dominated by the model fidelity and may vary from cell-to-cell. This paper proposes a systematic framework to quantify battery model and parameter uncertainties for more effective battery performance estimation. Such a framework is generally applicable for estimating various battery performances of interest (e.g. state of charge (SOC), capacity, and power capability). Case studies for battery SOC estimation are conducted to demonstrate the effectiveness of the proposed framework.https://papers.phmsociety.org/index.php/ijphm/article/view/2210extended kalman filterbattery socmodel uncertaintyparameter uncertaintybattery diagnostics
spellingShingle Rong Jing
Zhimin Xi
Xiao Guang Yang
Ed Decker
A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
International Journal of Prognostics and Health Management
extended kalman filter
battery soc
model uncertainty
parameter uncertainty
battery diagnostics
title A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
title_full A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
title_fullStr A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
title_full_unstemmed A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
title_short A Systematic Framework for Battery Performance Estimation Considering Model and Parameter Uncertainties
title_sort systematic framework for battery performance estimation considering model and parameter uncertainties
topic extended kalman filter
battery soc
model uncertainty
parameter uncertainty
battery diagnostics
url https://papers.phmsociety.org/index.php/ijphm/article/view/2210
work_keys_str_mv AT rongjing asystematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT zhiminxi asystematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT xiaoguangyang asystematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT eddecker asystematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT rongjing systematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT zhiminxi systematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT xiaoguangyang systematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties
AT eddecker systematicframeworkforbatteryperformanceestimationconsideringmodelandparameteruncertainties